|
|
|
|
1, 2, 4, 4, 8, 12, 8, 16, 24, 32, 16, 32, 48, 64, 80, 32, 64, 96, 128, 160, 192, 64, 128, 192, 256, 320, 384, 448, 128, 256, 384, 512, 640, 768, 896, 1024, 256, 512, 768, 1024, 1280, 1536, 1792, 2048, 2304, 512, 1024, 1536, 2048, 2560, 3072, 3584, 4096, 4608, 5120
(list;
table;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
1,2
|
|
COMMENTS
|
Row sums = A001780, (1, 6, 24, 80, 240, ...).
|
|
LINKS
|
G. C. Greubel, Rows n = 1..100 of triangle, flattened
|
|
FORMULA
|
A130123 * A002260, where A130123 = the 2^n transform and A002260 = [1; 1, 2; 1, 2, 3; ...).
T(n, k) = 2^(n-1)*k. - G. C. Greubel, Jun 05 2019
|
|
EXAMPLE
|
First few rows of the triangle are:
1;
2, 4;
4, 8, 12;
8, 16, 24, 32;
16, 32, 48, 64, 80;
32, 64, 96, 128, 160, 192; ...
|
|
MATHEMATICA
|
Table[2^(n-1)*k, {n, 1, 12}, {k, 1, n}]//Flatten (* G. C. Greubel, Jun 05 2019 *)
|
|
PROG
|
(PARI) {T(n, k) = 2^(n-1)*k}; \\ G. C. Greubel, Jun 05 2019
(Magma) [[2^(n-1)*k: k in [1..n]]: n in [1..12]]; // G. C. Greubel, Jun 05 2019
(Sage) [[2^(n-1)*k for k in (1..n)] for n in (1..12)] # G. C. Greubel, Jun 05 2019
(GAP) Flat(List([1..12], n-> List([1..n], k-> 2^(n-1)*k ))); # G. C. Greubel, Jun 05 2019
|
|
CROSSREFS
|
Cf. A001780, A130123, A002260.
Sequence in context: A338986 A319803 A055946 * A265417 A076342 A135268
Adjacent sequences: A130121 A130122 A130123 * A130125 A130126 A130127
|
|
KEYWORD
|
nonn,tabl
|
|
AUTHOR
|
Gary W. Adamson, May 11 2007
|
|
EXTENSIONS
|
More terms added by G. C. Greubel, Jun 05 2019
|
|
STATUS
|
approved
|
|
|
|