login
A130124
Triangle defined by A130123 * A002260, read by rows.
2
1, 2, 4, 4, 8, 12, 8, 16, 24, 32, 16, 32, 48, 64, 80, 32, 64, 96, 128, 160, 192, 64, 128, 192, 256, 320, 384, 448, 128, 256, 384, 512, 640, 768, 896, 1024, 256, 512, 768, 1024, 1280, 1536, 1792, 2048, 2304, 512, 1024, 1536, 2048, 2560, 3072, 3584, 4096, 4608, 5120
OFFSET
1,2
COMMENTS
Row sums = A001780, (1, 6, 24, 80, 240, ...).
FORMULA
A130123 * A002260, where A130123 = the 2^n transform and A002260 = [1; 1, 2; 1, 2, 3; ...).
T(n, k) = 2^(n-1)*k. - G. C. Greubel, Jun 05 2019
EXAMPLE
First few rows of the triangle are:
1;
2, 4;
4, 8, 12;
8, 16, 24, 32;
16, 32, 48, 64, 80;
32, 64, 96, 128, 160, 192; ...
MATHEMATICA
Table[2^(n-1)*k, {n, 1, 12}, {k, 1, n}]//Flatten (* G. C. Greubel, Jun 05 2019 *)
PROG
(PARI) {T(n, k) = 2^(n-1)*k}; \\ G. C. Greubel, Jun 05 2019
(Magma) [[2^(n-1)*k: k in [1..n]]: n in [1..12]]; // G. C. Greubel, Jun 05 2019
(Sage) [[2^(n-1)*k for k in (1..n)] for n in (1..12)] # G. C. Greubel, Jun 05 2019
(GAP) Flat(List([1..12], n-> List([1..n], k-> 2^(n-1)*k ))); # G. C. Greubel, Jun 05 2019
CROSSREFS
KEYWORD
nonn,tabl
AUTHOR
Gary W. Adamson, May 11 2007
EXTENSIONS
More terms added by G. C. Greubel, Jun 05 2019
STATUS
approved