login
Antidiagonal sums of triangular array T: T(j,k) = (k+1)/2 for odd k, T(j,k) = 0 for k = 0, T(j,k) = j+1-k/2 for even k > 0; 0 <= k <= j.
8

%I #24 Sep 19 2024 14:41:19

%S 0,0,1,1,3,4,7,8,12,14,19,21,27,30,37,40,48,52,61,65,75,80,91,96,108,

%T 114,127,133,147,154,169,176,192,200,217,225,243,252,271,280,300,310,

%U 331,341,363,374,397,408,432,444,469,481,507,520,547,560,588,602,631

%N Antidiagonal sums of triangular array T: T(j,k) = (k+1)/2 for odd k, T(j,k) = 0 for k = 0, T(j,k) = j+1-k/2 for even k > 0; 0 <= k <= j.

%C Interleaving of A077043 and A006578.

%C First differences are in A124072.

%C If the values of the second, fourth, sixth, ... column are replaced by the corresponding negative values, the antidiagonal sums of the resulting triangular array are 0, 0, 1, 1, -1, -2, -1, -2, -6, -8, -7, -9, ... .

%C Row sums of triangle A168316 = (1, 1, 3, 4, 7, 8, 12, ...). - _Gary W. Adamson_, Nov 22 2009

%H G. C. Greubel, <a href="/A129819/b129819.txt">Table of n, a(n) for n = 0..1000</a>

%F a(n) = a(n-1) + a(n-2) - a(n-3) + a(n-4) - a(n-5) - a(n-6) + a(n-7) for n > 6, with a(0) = 0, a(1) = 0, a(2) = 1, a(3) = 1, a(4) = 3, a(5) = 4, a(6) = 7.

%F G.f.: x^2*(1+x^2+x^3)/((1-x)^3*(1+x)^2*(1+x^2)).

%F a(n) = (3/16)*(n+2)*(n+1) - (5/8)*(n+1) + 7/32 + (3/32)*(-1)^n + (1/16)*(n+1)*(-1)^n - (1/8)*cos(n*Pi/2) + (1/8)*sin(n*Pi/2). - _Richard Choulet_, Nov 27 2008

%e First seven rows of T are

%e 0;

%e 0, 1;

%e 0, 1, 2;

%e 0, 1, 3, 2;

%e 0, 1, 4, 2, 3;

%e 0, 1, 5, 2, 4, 3;

%e 0, 1, 6, 2, 5, 3, 4;.

%t CoefficientList[Series[x^2*(1+x^2+x^3)/((1-x)*(1-x^2)*(1-x^4)), {x, 0, 70}], x] (* _G. C. Greubel_, Sep 19 2024 *)

%o (Magma) m:=59; M:=ZeroMatrix(IntegerRing(), m, m); for j:=1 to m do for k:=2 to j do if k mod 2 eq 0 then M[j, k]:= k div 2; else M[j, k]:=j-(k div 2); end if; end for; end for; [ &+[ M[j-k+1, k]: k in [1..(j+1) div 2] ]: j in [1..m] ]; // _Klaus Brockhaus_, Jul 16 2007

%o (Magma)

%o A129819:= func< n | Floor(((n-1)*(3*n+1) +(2*n+5)*((n+1) mod 2))/16) >;

%o [A129819(n): n in [0..70]]; // _G. C. Greubel_, Sep 19 2024

%o (PARI) {vector(59, n, (n-2+n%2)*(n+n%2)/8+floor((n-2-n%2)^2/16))} \\ _Klaus Brockhaus_, Jul 16 2007

%o (SageMath)

%o def A129819(n): return ((n-1)*(3*n+1) + (2*n+5)*((n+1)%2))//16

%o [A129819(n) for n in range(71)] # _G. C. Greubel_, Sep 19 2024

%Y Cf. A006578, A077043, A124072, A168316.

%K nonn

%O 0,5

%A _Paul Curtz_, May 20 2007

%E Edited and extended by _Klaus Brockhaus_, Jul 16 2007