login
A129720
Number of 0's in odd position in all Fibonacci binary words of length n. A Fibonacci binary word is a binary word having no 00 subword.
2
0, 1, 1, 4, 5, 14, 19, 46, 65, 145, 210, 444, 654, 1331, 1985, 3926, 5911, 11434, 17345, 32960, 50305, 94211, 144516, 267384, 411900, 754309, 1166209, 2116936, 3283145, 5914310, 9197455, 16458034, 25655489, 45638101, 71293590, 126159156
OFFSET
0,4
LINKS
É. Czabarka, R. Flórez, L. Junes, A Discrete Convolution on the Generalized Hosoya Triangle, Journal of Integer Sequences, 18 (2015), #15.1.6.
FORMULA
G.f.: z(1-z^2)/((1-z-z^2)^2*(1+z-z^2)).
a(2n) = a(2n-1) + a(2n-2) (n >= 1).
a(2n-1) = A030267(n).
a(2n) = A129722(2n) = A001870(n-1).
a(n) = Sum_{k=0..ceiling(n/2)} k*A129719(n,k).
EXAMPLE
a(4)=5 because in 1110, 1111, 110'1, 1010, 1011, 0'110, 0'111 and 0'10'1 one has altogether five 0's in odd position (marked by ').
MAPLE
g:=z*(1-z^2)/(1-z-z^2)^2/(1+z-z^2): gser:=series(g, z=0, 43): seq(coeff(gser, z, n), n=0..40);
CROSSREFS
KEYWORD
nonn
AUTHOR
Emeric Deutsch, May 13 2007
STATUS
approved