login

%I #18 Apr 08 2020 13:45:59

%S 1,2,1,1,0,1,3,2,0,1,1,0,0,0,1,2,1,2,0,0,1,1,0,0,0,0,0,1,4,3,0,2,0,0,

%T 0,1,1,0,1,0,0,0,0,0,1,2,1,0,0,2,0,0,0,0,1,1,0,0,0,0,0,0,0,0,0,1,3,2,

%U 3,1,0,2,0,0,0,0,0,1,1,0,0,0,0,0,0,0,0,0,0,0,1,2,1,0,0,0,0,2,0,0,0,0,0,0,1,1,0,1,0,1,0,0,0,0,0,0,0,0,0,1

%N A051731 * A115361.

%C The inverse Moebius transform of the first column of A115361 which is A209229 gives the first column of this sequence.

%H Andrew Howroyd, <a href="/A129353/b129353.txt">Table of n, a(n) for n = 1..1275</a>

%F T(n,k) = A001511(n/k) for k | n, T(n,k) = 0 otherwise. - _Andrew Howroyd_, Aug 04 2018

%e First few rows of the triangle are:

%e 1;

%e 2, 1;

%e 1, 0, 1;

%e 3, 2, 0, 1;

%e 1, 0, 0, 0, 1;

%e 2, 1, 2, 0, 0, 1;

%e 1, 0, 0, 0, 0, 0, 1;

%e 4, 3, 0, 2, 0, 0, 0, 1;

%e ...

%p A129353 := proc(n,k)

%p add( A051731(n,j)*A115361(j-1,k-1),j=k..n) ;

%p end proc: # _R. J. Mathar_, Jul 14 2012

%t T[n_, k_] := If[Mod[n, k] != 0, 0, 1 + IntegerExponent[n/k, 2]];

%t Table[T[n, k], {n, 1, 15}, {k, 1, n}] // Flatten (* _Jean-François Alcover_, Apr 08 2020, from PARI *)

%o (PARI) T(n, k)={if(n%k, 0, 1 + valuation(n/k,2))} \\ _Andrew Howroyd_, Aug 04 2018

%Y Column 1 is A001511.

%Y Row sums are A129628 (inverse Moebius transform of A001511).

%Y Cf. A051731, A115361.

%K nonn,tabl

%O 1,2

%A _Gary W. Adamson_, Apr 10 2007