

A129337


Maximal possible degree of a Chebyshevtype quadrature formula with n nodes, in the case of the constant weight function on [ 1,1].


0



1, 3, 3, 5, 5, 7, 7, 7, 9, 9, 9, 9, 11, 11, 11, 11, 13, 13, 13, 13, 13, 15, 15, 15, 15
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

1,2


COMMENTS

These are the results reported in reference [1]. Spherical designs in 3 dimensions (cf. A007828) also project to Chebyshevtype quadrature rules for the constant weight function on [ 1,1] (see reference [2]), but apparently this yields a smaller maximum degree for any given n.


LINKS

Table of n, a(n) for n=1..25.
KlausJurgen Forster, GeorgPeter Ostermeyer, On Weighted ChebyshevType Quadrature Formulas,Mathematics of Computation, Vol. 46, No. 174. (Apr., 1986), pp. 591599. Table 1, p. 596.
Greg Kuperberg, Numerical Cubature from Archimedes' Hatbox Theorem, SIAM J. Numer. Anal. 44 (2006), no. 3, 908935.


CROSSREFS

Cf. A007828.
Sequence in context: A078936 A061794 A088524 * A133909 A177691 A206913
Adjacent sequences: A129334 A129335 A129336 * A129338 A129339 A129340


KEYWORD

more,nonn


AUTHOR

Paul Leopardi, May 28 2007


STATUS

approved



