OFFSET
1,2
COMMENTS
Every prime is in row 1 or column 1 but not both. Row 1, A129259, contains the primes 2,7,13,23,29,31. Column 1, A129260, contains the primes 3,5,11,17,19,37. For n>=2, the determinant of every n X n submatrix is zero. T(n,1)>T(1,n) for n>=2; is T(n,1)=T(1,n)+1 for infinitely many n? The least positive integer not in the array is 45.
FORMULA
T(1,1)=1. For n>=1, let S(n)={(i,j): 1<=i<=n and 1<=j<=n}. Once T(i,j) is defined on S(n), define T(1,n+1)=least positive integer (l.p.i.) not among T(i,j) for (i,j) in S(n); T(n+1,1)=l.p.i. not among T(i,j) for (i,j) in S(n) and not T(1,n+1); T(m,n+1)=T(m,1)*T(1,n+1) for m=2,3,...,n+1; T(n+1,m)=T(n+1,1)*T(1,m) for m=2,3,...,n+1.
EXAMPLE
Corner
1 2 4 7 9 13 15 18 23 25 29
3 6 12 21 27 39 45 54 69 75 87
5 10 20 35 45 65 75 90 115 125 145
8 16 32 56 72 104 120 144 184 200 232
11 22 44 77 99 143 165 198 253 275 319
14 28 56 98 126 182 210 252 322 350 406
17 34 68 119 153 221 255 306 391 425 493
19 38 76 133 171 247 285 342 437 475 551
24 48 96 168 216 312 360 432 552 600 696
26 52 104 182 234 338 390 468 598 650 754
30 60 120 210 270 390 450 540 690 750 870
33 66 132 231 297 429 495 594 759 825 957
MATHEMATICA
mex[list_] := First[Complement[Range[Max[list] + 1], list]];
a129258[rowL_] := Module[{T, S}, T[1, 1] = 1;
S[n_] := Flatten[Table[T[i, j], {i, n}, {j, n}]];
Do[T[1, n] = mex[S[n - 1]];
T[n, 1] = mex[Append[S[n - 1], T[1, n]]];
Do[T[m, n] = T[m, 1]*T[1, n];
T[n, m] = T[n, 1]*T[1, m], {m, 2, n}], {n, 2, rowL}];
Table[T[i, j], {i, rowL}, {j, rowL}]];
t = a129258[20];
Grid[t] (* array *)
w[n_, k_] := t[[n]][[k]];
Table[w[n - k + 1, k], {n, 12}, {k, n, 1, -1}] // Flatten (* sequence *)
(* Peter J. C. Moses, Jan 1 2025 *)
CROSSREFS
KEYWORD
nonn,tabl
AUTHOR
Clark Kimberling, Apr 06 2007
EXTENSIONS
Edited by Clark Kimberling, Jan 11 2025
STATUS
approved