%I #11 Nov 09 2020 18:04:53
%S 4,14,194,37634,342576132,250734296,433300702,16341479,49808751,
%T 57936161,211467447,71320725,91230447,153832672,217471443,239636427,
%U 223645010,90243197,27374393,490737401,35441039,303927542,202574536
%N Residues of the Lucas - Lehmer primality test for M(29) = 536870911.
%C Since a(27) > 0, M(29) = 536870911 is composite. Mersenne numbers are only prime if a(p-2) = 0.
%H Dennis Martin, <a href="/A129225/b129225.txt">Table of n, a(n) for n = 0..27</a>
%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/Lucas-LehmerTest.html">Lucas Lehmer Test</a>.
%H Wikipedia, <a href="http://en.wikipedia.org/wiki/Lucas-Lehmer_primality_test">Lucas Lehmer Primality Test</a>.
%F a(0) = 4, a(n) = a(n-1)^2 mod 2^p-1, last term: a(p-2).
%e a(27) = 365171774^2 - 2 mod 536870911 = 458738443.
%Y Cf. A095847, A003010, A129219, A129220, A129221, A129222, A129223, A129224, A129226, A001348.
%K fini,nonn
%O 0,1
%A _Sergio Pimentel_, Apr 04 2007