login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A129198 Slater-Velez permutation sequence of the 2nd kind. 4
1, 2, 5, 3, 11, 7, 23, 4, 47, 42, 95, 89, 191, 6, 383, 376, 767, 8, 1535, 1526, 3071, 9, 6143, 6133, 12287, 10, 24575, 24564, 49151, 49139, 98303, 12, 196607, 196594, 393215, 13, 786431, 786417, 1572863, 14, 3145727, 3145712, 6291455, 15, 12582911 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,2

COMMENTS

This sequence is known to be a permutation of positive integers, along with its absolute difference sequence (A129199).

The rule for constructing the sequence is as follows: a(1)=1, a(2)=2, then apply the following recursion, assuming the members are already present up to index k: let M(k)=max(a(1),a(2),...,a(k)) and let n(k) be the smallest positive integer not present in the sequence yet, while m(k) the smallest integer not present in the absolute difference sequence (d(1),d(2),...,d(k-1)), so far. Then a(k+1)=2M(k)+1 and if m(k)<=n(k) then set a(k+2)=a(k+1)-m(k), else a(k+2)=n(k).

In the paper of Slater and Velez it is shown that both the sequence a(n) and d(n) are permutations of positive integers (in spite of their strange appearance).

LINKS

Table of n, a(n) for n=1..45.

P. J. Slater and W. Y. Velez, Permutations of the Positive Integers with Restrictions on the Sequence of Differences, Pacific J. Math., 71, 1977

PROG

(PARI) {SV_p2(n)=local(x, v=6, d=2, j, k, mx=2, nx=3, nd=2, u, w); /* Slater-Velez permutation - the 2nd kind */ x=vector(n); x[1]=1; x[2]=2; forstep(i=3, n, 2, k=x[i]=2*mx+1; if(nd<=nx, j=x[i]-nd, j=nx); x[i+1]=j; mx=max(mx, max(j, k)); v+=2^k+2^j; u=abs(k-x[i-1]); w=abs(j-k); d+=2^u+2^w; print(i" "k" "j" "u" "w); while(bittest(v, nx), nx++); while(bittest(d, nd), nd++)); return(x)}

CROSSREFS

The absolute difference is in A129199, Cf. A081145, which can be called as Slater-Velez permutation sequence of the first kind.

Sequence in context: A094744 A229608 A185061 * A122442 A225258 A162613

Adjacent sequences:  A129195 A129196 A129197 * A129199 A129200 A129201

KEYWORD

nonn

AUTHOR

Ferenc Adorjan (fadorjan(AT)freemail.hu or ferencadorjan(AT)gmail.com), Apr 04 2007

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified October 20 15:22 EDT 2018. Contains 316388 sequences. (Running on oeis4.)