login
Right shift operator generating 1's in shifted spaces.
20

%I #20 May 18 2020 20:15:28

%S 1,1,0,0,1,0,0,0,1,0,0,0,0,1,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,0,

%T 1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,1,0,0,0,

%U 0,0,0,0,0,0,0,0

%N Right shift operator generating 1's in shifted spaces.

%C Let A129186 = M, then M*V, V a vector; shifts V to the right, appending 1's to the shifted spaces. Example: M*V, V = [1,2,3,...] = [1,1,2,3,...].

%C Triangle T(n,k), read by rows, given by (1, -1, 0, 0, 0, 0, 0, 0, 0, ...) DELTA (0, 1, 0, 0, 0, 0, 0, 0, 0, ...) where DELTA is the operator defined in A084938. - _Philippe Deléham_, Dec 08 2011

%H Robert Price, <a href="/A129186/b129186.txt">Table of n, a(n) for n = 0..5049</a>

%F Infinite lower triangular matrix with (1,0,0,...) in the main diagonal and (1,1,1...) in the subdiagonal.

%F G.f.: (1-(y-1)*x)/(1-y*x). - _Philippe Deléham_, Dec 08 2011

%e First few rows of the triangle are:

%e 1;

%e 1, 0;

%e 0, 1, 0;

%e 0, 0, 1, 0;

%e 0, 0, 0, 1, 0;

%e ...

%p gf := 1 + z/(1 - x*z): ser := series(gf, z, 16): c := k -> coeff(ser, z, k):

%p seq(seq(coeff(c(n), x, k), k=0..n), n=0..14); # _Peter Luschny_, Jul 07 2019

%t Join[{1},Flatten[Table[PadLeft[{1,0},n,0],{n,2,20}]]] (* _Harvey P. Dale_, Aug 26 2019 *)

%Y Generalized Eulerian triangles: this sequence (m=0), A173018 (m=1), A292604 (m=2).

%Y Cf. A000012 (row sums), A071919, A129184, A129185.

%K nonn,easy,tabl

%O 0,1

%A _Gary W. Adamson_, Apr 01 2007