%I
%S 3,11,23,53,59,89,131,173,191,263,359,389,401,479,593,599,653,719,
%T 1013,1031,1109,1193,1229,1283,1439,1451,1523,1559,1601,1733,1979,
%U 2273,2531,2663,2699,2711,3041,3209,3251,3299,3323,3449,3491,3539,3623,3719,3911,3923,4091,4211
%N Smallest member p of a triple of primes (p,p+8,p+20).
%C A subsequence of A023202. The definition implies that the sum of the first two primes, 2(p+4), divides the sum of the product of the first two primes and the last, p(p+8)+p+20=(p+4)(p+5). This feature is shared with A022005 and common to prime triples of the format (p,p+2*a,p+a+a^2) with even a.  _R. J. Mathar_, Apr 26 2007
%p isA128928 := proc(n) isprime(n) and isprime(n+8) and isprime(n+20) ; end: for n from 1 to 300 do if isA128928(ithprime(n)) then printf("%d,",ithprime(n)) ; fi ; od ; # _R. J. Mathar_, Apr 26 2007
%t kmax = 580; Select[ Prime[ Range[1, kmax] ], (PrimeQ[ # + 8] && PrimeQ[ # + 20])& ] (* _Stuart Clary_ *)
%Y Cf. A022005.
%K nonn
%O 1,1
%A _J. M. Bergot_, Apr 25 2007
%E Corrected and extended by _Robert G. Wilson v_, _R. J. Mathar_ and _Stuart Clary_, Apr 26 2007
