login
This site is supported by donations to The OEIS Foundation.

 

Logo

Annual Appeal: Today, Nov 11 2014, is the 4th anniversary of the launch of the new OEIS web site. 70,000 sequences have been added in these four years, all edited by volunteers. Please make a donation (tax deductible in the US) to help keep the OEIS running.

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A128728 Triangle read by rows: T(n,k) is the number of skew Dyck paths of semilength n and having k UDL's (n>=0; 0<=k<=floor((n+1)/2)). A skew Dyck path is a path in the first quadrant which begins at the origin, ends on the x-axis, consists of steps U=(1,1)(up), D=(1,-1)(down) and L=(-1,-1)(left) so that up and left steps do not overlap. The length of a path is defined to be the number of steps in it. 2
1, 1, 2, 1, 6, 4, 20, 16, 71, 64, 2, 262, 261, 20, 994, 1084, 141, 3852, 4572, 854, 7, 15183, 19520, 4772, 112, 60686, 84139, 25416, 1128, 245412, 365404, 131270, 9120, 30, 1002344, 1596420, 664004, 64790, 660, 4129012, 7008544, 3309336, 422928 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,3

COMMENTS

Row n has 1+floor((n+1)/3) terms. Row sums yield A002212. T(n,0)=A128729(n). Sum(k*T(n,k),k>=0)=A128730(n). Apparently, T(3k-1,k)=binom(3k-1,k)/(3k-1)=A006013(k-1).

LINKS

Table of n, a(n) for n=0..42.

E. Deutsch, E. Munarini, S. Rinaldi, Skew Dyck paths, J. Stat. Plann. Infer. 140 (8) (2010) 2191-2203

FORMULA

G.f.=G=G(t,z) satisfies z^2*G^3-z(2-z)G^2+(1-z^2)G-1+z+z^2-tz^2=0.

EXAMPLE

T(3,1)=4 because we have UDUUDL, UUUDLD, UUDUDL and UUUDLL.

Triangle starts:

1;

1;

2,1;

6,4;

20,16;

71,64,2;

262,261,20;

MAPLE

eq:=z^2*G^3-z*(2-z)*G^2+(1-z^2)*G-1+z+z^2-t*z^2=0: G:=RootOf(eq, G): Gser:=simplify(series(G, z=0, 17)): for n from 0 to 14 do P[n]:=sort(coeff(Gser, z, n)) od: for n from 0 to 14 do seq(coeff(P[n], t, j), j=0..floor((n+1)/3)) od; # yields sequence in triangular form

CROSSREFS

Cf. A002212, A128729, A128730, A006013.

Sequence in context: A155550 A005299 A185586 * A084950 A180317 A066654

Adjacent sequences:  A128725 A128726 A128727 * A128729 A128730 A128731

KEYWORD

nonn,tabf

AUTHOR

Emeric Deutsch, Mar 31 2007

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

Content is available under The OEIS End-User License Agreement .

Last modified December 22 15:37 EST 2014. Contains 252364 sequences.