login
A128524
a(n) = denominator of r(n): r(n) is such that the continued fraction (of rational terms) [r(1);r(2),...r(n)] equals n! for every positive integer n.
2
1, 1, 4, 9, 128, 675, 2048, 3675, 262144, 3472875, 8388608, 151278435, 268435456, 6249480237, 4294967296, 124351902675, 2199023255552, 15401871374175, 140737488355328, 5834647198969875, 4503599627370496
OFFSET
1,3
LINKS
FORMULA
For n >= 4, r(n) = -(n - 1/(n-1)) *(n + 1/(n-3)) /(r(n-1) (n-1)).
EXAMPLE
4! = 24 = 1 + 1/(1 + 1/(-5/4 + 9/44)).
5! = 120 = 1 + 1/(1 + 1/(-5/4 + 1/(44/9 -128/171))).
CROSSREFS
Sequence in context: A168138 A267898 A324981 * A027451 A227744 A035127
KEYWORD
frac,nonn
AUTHOR
Leroy Quet, Mar 07 2007
EXTENSIONS
More terms from Diana L. Mecum, May 29 2007
STATUS
approved