login
A128125
Numbers k such that 2^k == 14 (mod k).
8
1, 2, 3, 10, 1010, 61610, 469730, 2037190, 3820821, 9227438, 21728810, 24372562, 207034456857, 1957657325241, 2002159320610, 35169368880130, 36496347203230, 116800477091426
OFFSET
1,2
COMMENTS
No other terms below 10^15. Some larger terms: 279283702428813463, 3075304070192893442, 21894426987819404424310, 4616079845508388554313022889, 82759461944940747300611642693066719359651817521, 446*(2^445-7)/1061319625781480182060453906975 (107 digits). - Max Alekseyev, Oct 03 2016
MATHEMATICA
For[n=1, n<= 10^6, n++, If[PowerMod[2, n, n] == Mod[14, n], Print[n]]] (* Stefan Steinerberger, May 05 2007 *)
m = 14; Join[Select[Range[m], Divisible[2^# - m, #] &],
Select[Range[m + 1, 10^6], PowerMod[2, #, #] == m &]] (* Robert Price, Oct 08 2018 *)
CROSSREFS
Cf. A015910, A036236, A050259 (numbers k such that 2^k == 3 (mod k)), A033981, A051447, A033982, A051446, A033983, A128121, A128122, A128123, A128124, A128126.
Sequence in context: A330581 A184163 A218271 * A351775 A070239 A002443
KEYWORD
hard,more,nonn
AUTHOR
Alexander Adamchuk, Feb 15 2007
EXTENSIONS
1, 2, 3 and 10 added by N. J. A. Sloane, Apr 23 2007
More terms from Stefan Steinerberger, May 05 2007
a(13) from Max Alekseyev, May 15 2011
a(14), a(16), a(17) from Max Alekseyev, Dec 16 2013
a(15), a(18) from Max Alekseyev, Oct 03 2016
STATUS
approved