login
A128014
Central binomial coefficients C(2n,n) repeated.
14
1, 1, 2, 2, 6, 6, 20, 20, 70, 70, 252, 252, 924, 924, 3432, 3432, 12870, 12870, 48620, 48620, 184756, 184756, 705432, 705432, 2704156, 2704156, 10400600, 10400600, 40116600, 40116600, 155117520, 155117520, 601080390, 601080390
OFFSET
0,3
COMMENTS
Binomial transform is A097893. Hankel transform is A128017.
Hankel transform of a(n+1) is A128018. - Paul Barry, Nov 23 2009
Number of 2n-bead balanced binary necklaces that are equivalent to their reverse. - Andrew Howroyd, Sep 29 2017
Number of ballot sequences of length n in which the vote is tied or decided by 1 vote. - Nachum Dershowitz, Aug 12 2020
Number of binary strings of length n that are abelian squares. - Michael S. Branicky, Dec 21 2020
FORMULA
G.f.: (1+x)/sqrt(1-4*x^2).
a(n) = C(n,n/2)*(1+(-1)^n)/2 + C(n-1,(n-1)/2)*(1-(-1)^n)/2.
a(n) = (1/Pi)*Integral_{x=-2..2} x^n*(1+x)/(x*sqrt(4-x^2)), as moment sequence.
E.g.f. of a(n+1): Bessel_I(0,2*x)+2*Bessel_I(1,2*x). - Paul Barry, Mar 26 2010
n*a(n) +(n-2)*a(n-1) +4*(-n+1)*a(n-2) +4*(-n+3)*a(n-3) = 0. - R. J. Mathar, Nov 26 2012
a(n) = 2^n*Product_{k=0..n-1} ((k/n+1/n)/2)^((-1)^k). - Peter Luschny, Dec 03 2013
From Reinhard Zumkeller, Nov 14 2014: (Start)
a(n) = A000984(floor(n/2)).
a(n) = A249095(n,n) = A249308(n) / 2^n. (End)
MATHEMATICA
(1+x)/Sqrt[1-4x^2] + O[x]^34 // CoefficientList[#, x]& (* Jean-François Alcover, Oct 07 2017 *)
With[{cb=Table[Binomial[2n, n], {n, 0, 20}]}, Riffle[cb, cb]] (* Harvey P. Dale, Feb 17 2020 *)
PROG
(Haskell)
a128014 = a000984 . flip div 2
-- Reinhard Zumkeller, Nov 14 2014
CROSSREFS
KEYWORD
easy,nonn
AUTHOR
Paul Barry, Feb 11 2007
STATUS
approved