This site is supported by donations to The OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A127968 a(n) = F(n+1) + (1-(-1)^n)/2, where F() = Fibonacci numbers A000045. 2

%I

%S 1,2,2,4,5,9,13,22,34,56,89,145,233,378,610,988,1597,2585,4181,6766,

%T 10946,17712,28657,46369,75025,121394,196418,317812,514229,832041,

%U 1346269,2178310,3524578,5702888,9227465,14930353,24157817,39088170,63245986,102334156

%N a(n) = F(n+1) + (1-(-1)^n)/2, where F() = Fibonacci numbers A000045.

%C Row sums of A127967.

%C The sequence beginning 1,1,2,2,4,... with g.f. x/(1-x-x^2) + 1/(1-x^2) has general term a(n) = F(n) + (1+(-1)^n)/2.

%H Colin Barker, <a href="/A127968/b127968.txt">Table of n, a(n) for n = 0..1000</a>

%H <a href="/index/Rec#order_04">Index entries for linear recurrences with constant coefficients</a>, signature (1,2,-1,-1).

%F G.f.: 1 / (1 - x - x^2) + x / (1 - x^2).

%F G.f.: (1 + x - 2*x^2 - x^3) / ((1 - x)*(1 + x)*(1 - x - x^2)).

%F From _Colin Barker_, Jul 12 2017: (Start)

%F a(n) = (5 - 5*(-1)^n + 2^(-n)*sqrt(5)*(-(1-sqrt(5))^(1+n) + (1+sqrt(5))^(1+n))) / 10.

%F a(n) = a(n-1) + 2*a(n-2) - a(n-3) - a(n-4) for n>3.

%F (End)

%t LinearRecurrence[{1,2,-1,-1},{1,2,2,4},40] (* _Harvey P. Dale_, Jun 19 2013 *)

%o (PARI) Vec((1+x-2*x^2-x^3)/((1-x)*(1+x)*(1-x-x^2)) + O(x^50)) \\ _Colin Barker_, Jul 12 2017

%o (MAGMA) I:=[1,2,2,4]; [n le 4 select I[n] else Self(n-1) +2*Self(n-2) - Self(n-3) -Self(n-4): n in [1..30]]; // _G. C. Greubel_, May 04 2018

%K easy,nonn

%O 0,2

%A _Paul Barry_, Feb 09 2007

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified October 14 09:25 EDT 2019. Contains 327995 sequences. (Running on oeis4.)