login
A127771
Inverse of number triangle A(n,k) = 1/Euler_phi(n+1) if k <= n <= 2k, 0 otherwise.
1
1, 0, 1, 0, -1, 2, 0, 1, -2, 2, 0, 0, 0, -2, 4, 0, -1, 2, 0, -4, 2, 0, 0, 0, 0, 0, -2, 6, 0, 1, -2, 2, 0, 0, -6, 4, 0, 0, 0, 0, 0, 0, 0, -4, 6, 0, 0, 0, -2, 4, 0, 0, 0, -6, 4, 0, 0, 0, 0, 0, 0, 0, 0, 0, -4, 10, 0, -1, 2, 0, -4, 2, 0, 0, 0, 0, -10, 4
OFFSET
0,6
COMMENTS
It is conjectured that all elements of the triangle are integers.
EXAMPLE
Triangle begins
1;
0, 1;
0, -1, 2;
0, 1, -2, 2;
0, 0, 0, -2, 4;
0, -1, 2, 0, -4, 2;
0, 0, 0, 0, 0, -2, 6;
0, 1, -2, 2, 0, 0, -6, 4;
0, 0, 0, 0, 0, 0, 0, -4, 6;
0, 0, 0, -2, 4, 0, 0, 0, -6, 4;
0, 0, 0, 0, 0, 0, 0, 0, 0, -4, 10;
0, -1, 2, 0, -4, 2, 0, 0, 0, 0, -10, 4;
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -4, 12;
Inverse of the triangle
1;
0, 1;
0, 1/2, 1/2;
0, 0, 1/2, 1/2;
0, 0, 1/4, 1/4, 1/4;
0, 0, 0, 1/2, 1/2, 1/2;
0, 0, 0, 1/6, 1/6, 1/6, 1/6;
0, 0, 0, 0, 1/4, 1/4, 1/4, 1/4;
0, 0, 0, 0, 1/6, 1/6, 1/6, 1/6, 1/6;
0, 0, 0, 0, 0, 1/4, 1/4, 1/4, 1/4, 1/4;
0, 0, 0, 0, 0, 1/10, 1/10, 1/10, 1/10, 1/10, 1/10;
MATHEMATICA
rows = 11;
A[n_, k_] := If[k <= n, If[n <= 2 k, 1/EulerPhi[n+1] , 0], 0];
T = Table[A[n, k], {n, 0, rows-1}, {k, 0, rows-1}] // Inverse;
Table[T[[n, k]], {n, 1, rows}, {k, 1, n}] // Flatten (* Stefano Spezia, Sep 30 2018 *)
CROSSREFS
Cf. A000010.
Row sums are A127772.
Sequence in context: A285124 A094238 A127793 * A248806 A118407 A101663
KEYWORD
sign,tabl
AUTHOR
Paul Barry, Jan 28 2007
STATUS
approved