login
A127648 * A054523 as infinite lower triangular matrices.
5

%I #9 Oct 08 2023 09:01:51

%S 1,2,2,6,0,3,8,4,0,4,20,0,0,0,5,12,12,6,0,0,6,42,0,0,0,0,0,7,32,16,0,

%T 8,0,0,0,8,54,0,18,0,0,0,0,0,9,40,40,0,0,10,0,0,0,0,10,110,0,0,0,0,0,

%U 0,0,0,0,11,48,24,24,24,0,12,0,0,0,0,0,12,156,0,0,0,0,0,0,0,0,0,0,0,13,84

%N A127648 * A054523 as infinite lower triangular matrices.

%C Natural number transform of A054523.

%C Row sums = n^2, left column = A002618

%F T(n,k)=n*A054523(n,k). - _R. J. Mathar_, Nov 01 2007

%F T(n,k) = Sum_{y=1..n} Sum_{x=1..n} [GCD(f(x,y), n) = k], where f(x,y) = x - y. - _Mats Granvik_, Oct 08 2023

%e First few rows of the triangle are:

%e 1;

%e 2, 2;

%e 6, 0, 3;

%e 8, 4, 0, 4;

%e 20, 0, 0, 0, 5;

%e 12, 12, 6, 0, 0, 6;

%e 42, 0, 0, 0, 0, 0, 7;

%e ...

%p A054523 := proc(n,k) if n mod k = 0 then numtheory[phi](n/k) ; else 0 ; fi ; end: A127649 := proc(n,k) A054523(n,k)*n ; end: for n from 1 to 20 do for k from 1 to n do printf("%d,",A127649(n,k)) ; od: od: # _R. J. Mathar_, Nov 01 2007

%Y Cf. A127648, A002618, A054523.

%K nonn,tabl,easy

%O 1,2

%A _Gary W. Adamson_, Jan 22 2007

%E More terms from _R. J. Mathar_, Nov 01 2007