login
Exponential error term from Stirling's Approximation.
0

%I #10 Jan 24 2024 09:57:41

%S 1,1,18,345,10243,437769,25260317,1873346813,172254143084,

%T 19114537903943,2506628271002200,382005168783773474,

%U 66734799966312471195,13212509243902296154744,2936153006332857671962341,726345521215072990990045577,198595552305314906351047196508

%N Exponential error term from Stirling's Approximation.

%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/StirlingsSeries.html">Stirling's Series</a>.

%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/StirlingsApproximation.html">Stirling's Approximation</a>.

%F a(n) = floor(sqrt(2*Pi)*(n^n)*(n^(n/2))) - n!.

%e a(1) = Floor[(sqrt(2*pi) * (1^1) * (1^(1/2))) - 1! ] = Floor(1.50662827) = 1.

%e a(2) = Floor[(sqrt(2*pi) * (2^2) * (2^(2/2))) - 2! ] = Floor(18.0530262) = 18.

%Y Cf. A005394, A046968, A046969, A055775, A127426.

%K easy,nonn

%O 0,3

%A _Jonathan Vos Post_, Apr 02 2007

%E More terms from _Alois P. Heinz_, Jan 24 2024