



12, 3, 4, 9, 12, 13, 12, 9, 4, 3, 12, 23, 36, 51, 68, 87, 108, 131, 156, 183, 212, 243, 276, 311, 348, 387, 428, 471, 516, 563, 612, 663, 716, 771, 828, 887, 948, 1011, 1076, 1143, 1212, 1283, 1356, 1431, 1508, 1587, 1668, 1751, 1836, 1923, 2012, 2103, 2196, 2291
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

0,1


REFERENCES

V. van der Noort and N. J. A. Sloane, Paper in preparation, 2007.


LINKS

G. C. Greubel, Table of n, a(n) for n = 0..1000
Index entries for linear recurrences with constant coefficients, signature (3,3,1).


FORMULA

a(n) = n^2  10*n + 12.
a(n) = a(n1) + 2*n  11, with a(0)=12.  Vincenzo Librandi, Nov 23 2010
G.f.: (12  33*x + 23*x^2)/(1  x)^3.  Harvey P. Dale, Apr 02 2011
E.g.f.: (12  9*x + x^2)*exp(x).  G. C. Greubel, Aug 25 2019


MAPLE

seq((n5)^2 13, n=0..60); # G. C. Greubel, Aug 25 2019


MATHEMATICA

Table[n^210n+12, {n, 0, 60}] (* Harvey P. Dale, Apr 02 2011 *)
Range[5, 55]^2  13 (* G. C. Greubel, Aug 25 2019 *)


PROG

(Sage) [lucas_number2(2, n, 6n) for n in range(6, 48)] # Zerinvary Lajos, Mar 12 2009
(PARI) a(n)=n^210*n+12 \\ Charles R Greathouse IV, Jun 17 2017
(MAGMA) [(n5)^2 13: n in [0..60]]; // G. C. Greubel, Aug 25 2019
(GAP) List([0..60], n> (n5)^2 13); # G. C. Greubel, Aug 25 2019


CROSSREFS

A row of A127080.
Sequence in context: A098067 A070604 A268592 * A306536 A063609 A040139
Adjacent sequences: A127143 A127144 A127145 * A127147 A127148 A127149


KEYWORD

sign,easy,changed


AUTHOR

N. J. A. Sloane, Mar 24 2007


STATUS

approved



