login
A127146
Q(n,4), where Q(m,k) is defined in A127080 and A127137.
2
12, 3, -4, -9, -12, -13, -12, -9, -4, 3, 12, 23, 36, 51, 68, 87, 108, 131, 156, 183, 212, 243, 276, 311, 348, 387, 428, 471, 516, 563, 612, 663, 716, 771, 828, 887, 948, 1011, 1076, 1143, 1212, 1283, 1356, 1431, 1508, 1587, 1668, 1751, 1836, 1923, 2012, 2103, 2196, 2291
OFFSET
0,1
REFERENCES
V. van der Noort and N. J. A. Sloane, Paper in preparation, 2007.
FORMULA
a(n) = n^2 - 10*n + 12.
a(n) = a(n-1) + 2*n - 11, with a(0)=12. - Vincenzo Librandi, Nov 23 2010
G.f.: (12 - 33*x + 23*x^2)/(1 - x)^3. - Harvey P. Dale, Apr 02 2011
E.g.f.: (12 - 9*x + x^2)*exp(x). - G. C. Greubel, Aug 25 2019
MAPLE
seq((n-5)^2 -13, n=0..60); # G. C. Greubel, Aug 25 2019
MATHEMATICA
Table[n^2-10n+12, {n, 0, 60}] (* Harvey P. Dale, Apr 02 2011 *)
Range[-5, 55]^2 - 13 (* G. C. Greubel, Aug 25 2019 *)
PROG
(Sage) [lucas_number2(2, n, 6-n) for n in range(-6, 48)] # Zerinvary Lajos, Mar 12 2009
(PARI) a(n)=n^2-10*n+12 \\ Charles R Greathouse IV, Jun 17 2017
(Magma) [(n-5)^2 -13: n in [0..60]]; // G. C. Greubel, Aug 25 2019
(GAP) List([0..60], n-> (n-5)^2 -13); # G. C. Greubel, Aug 25 2019
CROSSREFS
A row of A127080.
Sequence in context: A098067 A070604 A268592 * A306536 A063609 A040139
KEYWORD
sign,easy
AUTHOR
N. J. A. Sloane, Mar 24 2007
STATUS
approved