%I
%S 0,1,2,4,5,8,10,16,17,20,21,32,34,40,42,64,65,68,69,80,81,84,85,128,
%T 130,136,138,160,162,168,170,256,257,260,261,272,273,276,277,320,321,
%U 324,325,336,337,340,341,512,514,520,522,544,546,552,554,640,642,648,650
%N Union of A000695 and 2*A000695.
%C Essentially the same as A032937: 0 followed by terms of A032937.  _R. J. Mathar_, Jun 15 2008
%C Previous name was: If A = {a_1, a_2, a_3...} is the Moserde Bruijn sequence A000695 (consisting of sums of distinct powers of 4) and A' = {2a_1, 2a_2, 2a_3...} then this sequence, let's call it B, is the union of A and A'. Its significance, alluded to in the entry for the Moserde Bruijn sequence, is that its sumset, B+B, = {b_i + b_j : i, j natural numbers} consists of the nonnegative integers; and it is the fastestgrowing sequence with this property. It can also be described as a "basis of order two for the nonnegative integers".
%C The sequence is the fastest growing with this property in the sense that a(n) ~ n^2, and any sequence with this property is O(n^2).  _Franklin T. AdamsWatters_, Jul 27 2015
%C Or, base 2 representation Sum{d(i)*2^(mi): i=0,1,...,m} has even d(i) for all odd i.
%C Union of A000695 and 2*A000695.  _Ralf Stephan_, May 05 2004
%C Union of A000695 and A062880.  _Franklin T. AdamsWatters_, Aug 30 2014
%H Reinhard Zumkeller, <a href="/A126684/b126684.txt">Table of n, a(n) for n = 1..10000</a>
%F G.f.: sum(i>=1, T(i, x) + U(i, x) ), where
%F T := (k,x) > x^(2^k1)*V(k,x);
%F U := (k,x) > 2*x^(3*2^(k1)1)*V(k,x); and
%F V := (k,x) > (1x^(2^(k1)))*(4^(k1) + sum(4^j*x^(2^j)/(1+x^(2^j)), j = 0..k2))/(1x);
%F Generating function. Define V(k) := [4^(k1) + Sum ( j=0 to k2, 4^j * x^(2^j)/(1+x^(2^j)) )] * (1x^(2^(k1)))/(1x) and T(k) := (x^(2^k1) * V(k), U(k) := x^(3*2^(k1)1) * V(k) then G.f. is Sum ( i >= 1, T(i) + U(i) ). Functional equation: if the sequence is a(n), n = 1, 2, 3, ... and h(x) := Sum ( n >= 1, x^a(n) ) then h(x) satisfies the following functional equation: (1 + x^2)*h(x^4)  (1  x)*h(x^2)  x*h(x) + x^2 = 0.
%e All nonnegative integers can be represented in the form b_i + b_j; e.g. 6 = 5+1, 7 = 5+2, 8 = 0+8, 9 = 4+5
%o (PARI) for(n=0,350,b=binary(n):l=length(b); if(sum(i=1,floor(l/2), component(b,2*i))==0,print1(n,",")))
%o (Haskell)
%o a126684 n = a126684_list !! (n1)
%o a126684_list = tail $ m a000695_list $ map (* 2) a000695_list where
%o m xs'@(x:xs) ys'@(y:ys)  x < y = x : m xs ys'
%o  otherwise = y : m xs' ys
%o  _Reinhard Zumkeller_, Dec 03 2011
%Y Cf. A000695, A062880, A033053, A032937.
%K easy,nonn
%O 1,3
%A _Jonathan Deane_, Feb 15 2007, May 04 2007
%E New name (using comment from _Ralf Stephan_) from _Joerg Arndt_, Aug 31 2014
