|
|
A126528
|
|
Number of base 7 n-digit numbers with adjacent digits differing by five or less.
|
|
14
|
|
|
1, 7, 47, 317, 2137, 14407, 97127, 654797, 4414417, 29760487, 200635007, 1352612477, 9118849897, 61476161767, 414451220087, 2794088129357, 18836784876577, 126991149906247, 856130823820367, 5771740692453437, 38911098273822457, 262325293105201927
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
0,2
|
|
COMMENTS
|
[Empirical] a(base,n)=a(base-1,n)+11^(n-1) for base>=5n-4; a(base,n)=a(base-1,n)+11^(n-1)-2 when base=5n-5.
For n>=1, a(n) equals the numbers of words of length n-1 on alphabet {0,1,...,6} containing no subwords 00 and 11. - Milan Janjic, Jan 31 2015
|
|
LINKS
|
Colin Barker, Table of n, a(n) for n = 0..1000
Index entries for linear recurrences with constant coefficients, signature (6,5).
|
|
FORMULA
|
From Philippe Deléham, Mar 24 2012: (Start)
G.f.: (1+x)/(1-6*x-5*x^2).
a(n) = 6*a(n-1) + 5*a(n-2), a(0) = 1, a(1) = 7 .
a(n) = Sum_{k=0..=n} A054458(n,k)*4^k.
(End)
a(n) = A091928(n+1)/5. - Philippe Deléham, Mar 27 2012
a(n) = (((3-sqrt(14))^n * (-4+sqrt(14)) + (3+sqrt(14))^n * (4+sqrt(14)))) / (2*sqrt(14)). - Colin Barker, Sep 08 2016
|
|
PROG
|
(S/R) stvar $[N]:(0..M-1) init $[]:=0 asgn $[]->{*} kill +[i in 0..N-2](($[i]`-$[i+1]`>5)+($[i+1]`-$[i]`>5))
(PARI) Vec((1+x)/(1-6*x-5*x^2) + O(x^30)) \\ Colin Barker, Sep 08 2016
|
|
CROSSREFS
|
Cf. Base 7 differing by four or less A126502, three or less A126475, two or less A126394, one or less A126361.
Sequence in context: A163346 A186446 A244830 * A214992 A241364 A098405
Adjacent sequences: A126525 A126526 A126527 * A126529 A126530 A126531
|
|
KEYWORD
|
nonn,base
|
|
AUTHOR
|
R. H. Hardin, Dec 28 2006
|
|
STATUS
|
approved
|
|
|
|