OFFSET
0,2
COMMENTS
A hex tree is a rooted tree where each vertex has 0, 1, or 2 children and, when only one child is present, it is either a left child, or a middle child, or a right child (name due to an obvious bijection with certain tree-like polyhexes; see the Harary-Read reference).
Row 0 has one term; rows 2n-1 and 2n have n terms.
Sum of terms in row n = A002212(n+1).
T(n,0)=A126184(n).
Sum_{k=1..floor((n-1)/2)} k*T(n,k) = A126185(n).
LINKS
F. Harary and R. C. Read, The enumeration of tree-like polyhexes, Proc. Edinburgh Math. Soc. (2) 17 (1970), 1-13.
FORMULA
G.f.: G(t,z)=1+3*z*H+z^2*H^2, where H=H(t,z) is defined by H=1+3*z*H+t*z^2*H^2 (see explicit expression of G(t,z) at the Maple program).
EXAMPLE
Triangle begins:
1;
3;
10;
33, 3;
108, 29;
351, 186, 6;
MAPLE
G := 1/2/t^2/z^2*(-11*t*z^2+2*t^2*z^2+3*z*t+9*z^2-6*z+1-sqrt(1-58*t*z^2-12*z+54*z^2 +6*z*t+81*z^4-108*z^3 -36*t^3*z^4+153*t^2*z^4 -198*t*z^4-78*t^2*z^3+186*t*z^3+9*t^2*z^2)): Gser:=simplify(series(G, z=0, 16)): for n from 0 to 18 do P[n]:=sort(coeff(Gser, z, n)) od: 1; for n from 1 to 13 do seq(coeff(P[n], t, j), j=0..floor((n-1)/2)) od; # yields sequence in triangular form
MATHEMATICA
len = 40; m = Ceiling[2 Sqrt[len]]; gf[t_, z_] = g /. Solve[g == 1 + 3z* h + z^2*h^2 && h == 1 + 3z*h + t*z^2*h^2, g, h][[1]]; gser = Series[gf[t, z], {z, 0, m}]; p[n_] := Coefficient[gser, z, n]; tr[n_, k_] := tr[n, k] = Coefficient[p[n], t, k]; Flatten[Table[ tr[n, k], {n, 0, m}, {k, 0, Max[0, Floor[(n-1)/2]]}]][[1 ;; len]] (* Jean-François Alcover, May 31 2011, after Maple prog. *)
CROSSREFS
KEYWORD
nonn,tabf
AUTHOR
Emeric Deutsch, Dec 19 2006
EXTENSIONS
Keyword tabl changed to tabf by Michel Marcus, Apr 09 2013
STATUS
approved