%I #20 Apr 04 2020 08:58:52
%S 1,1,2,2,4,4,6,12,12,8,24,48,48,32,16,120,240,240,160,80,32,720,1440,
%T 1440,960,480,192,64,5040,10080,10080,6720,3360,1344,448,128,40320,
%U 80640,80640,53760,26880,10752,3584,1024,256,362880,725760,725760,483840,241920,96768,32256,9216,2304,512
%N Triangle read by rows, obtained by multiplying columns of triangle in A094587 by 1,2,4,8,16,... respectively.
%C Also obtained by multiplying the n-th rows of A094587 by the first (n+1) powers of 2: T(n,k) = A094587(n,k) * A059268(n,k), 0 <= k <= n. - _Reinhard Zumkeller_, Jul 05 2012
%H Reinhard Zumkeller, <a href="/A126064/b126064.txt">Rows n = 0..150 of triangle, flattened</a>
%H Peter Luschny, <a href="http://www.luschny.de/math/seq/variations.html">Variants of Variations</a>.
%e 1
%e 1, 2
%e 2, 4, 4
%e 6, 12, 12, 8
%e 24, 48, 48, 32, 16
%e 120, 240, 240, 160, 80, 32
%e 720, 1440, 1440, 960, 480, 192, 64
%e 5040, 10080, 10080, 6720, 3360, 1344, 448, 128
%p A126064 := proc(n,k) binomial(n,k)*(n-k)!*2^k ; end: for n from 0 to 13 do for k from 0 to n do printf("%d,",A126064(n,k)) ; od: od: # _R. J. Mathar_, Nov 02 2007
%t m = 9;
%t T = Transpose[2^Range[0, m] Table[n!/k!, {k, 0, m}, {n, 0, m}]];
%t Table[T[[n+1, k+1]], {n, 0, m}, {k, 0, n}] // Flatten (* _Jean-François Alcover_, Apr 04 2020 *)
%o (Haskell)
%o a126064 n k = a126064_tabl !! n !! k
%o a126064_row n = a126064_tabl !! n
%o a126064_tabl = zipWith (zipWith (*)) a094587_tabl a059268_tabl
%o -- _Reinhard Zumkeller_, Jul 05 2012
%K nonn,tabl,easy
%O 0,3
%A _N. J. A. Sloane_, Feb 28 2007
%E More terms from _R. J. Mathar_, Nov 02 2007