login
A125841
Numbers n such that previous_prime(n)=n-sd and next_prime(n)=n+sd where sd is sum of the distinct prime factors of n.
1
144, 288, 1728, 5184, 7168, 11760, 21632, 21952, 73500, 110592, 113400, 114244, 151263, 153790, 186624, 205800, 235298, 250563, 663552, 708588, 1404928, 2976750, 3449628, 4738500, 5265000, 7077888, 9437184, 11529602, 11745162
OFFSET
1,1
COMMENTS
14267656658790241528591830756844692582808594415616 is a 50-digit term of this sequence. 493009335 is the smallest number n such that previous_prime(n)=n-s and next_prime(n)=n+s where s is sum of the prime factors of n. What is the next number with the same property?
EXAMPLE
113400=2^3*3^4*5^2*7 is in the sequence because previous_prime(113400)
=113400-(2+3+5+7) and next_prime(113400)=113400+(2+3+5+7).
MATHEMATICA
Do[If[c=Apply[Plus, PrimeFactorList[n]]; n-c==PreviousPrime[n]&&n+c== NextPrime[n], Print[n]], {n, 4, 20000000}]
CROSSREFS
Cf. A125840.
Sequence in context: A250773 A262245 A134341 * A320457 A154051 A335543
KEYWORD
easy,nonn,base
AUTHOR
Farideh Firoozbakht, Feb 04 2007, corrected Feb 08 2007
STATUS
approved