%I #17 Aug 09 2024 01:49:19
%S 0,1,3,4,6,1,15,1,2,2,3,1,23,3,1,1,3,1,1,6,4,1,1,2,4,39,1,1,3,1,2,1,3,
%T 181,2,1,103,2,1,5,1,1,1,1,6,1,7,5,1,2,1,2,2,2,2,1,21,8,1,9,2,2,4,2,6,
%U 1,4,1,1,1,1,15,1,1,10,1,7,2,1,1,2,4,2,4,1,3,1,4,1,1,23,1,1,48,1,38,1,1,1
%N Continued fraction expansion of the Landau-Ramanujan constant (A064533).
%C Increasing PQ's: 0, 1, 3, 4, 6, 15, 23, 39, 181, 386, 3389, 62656, ...
%H Harry J. Smith, <a href="/A125776/b125776.txt">Table of n, a(n) for n = 0..9686</a>
%e k=0.7642236535892206629906987... = 0 + 1/(1 + 1/(3 + 1/(4 + 1/(6 + ...)))). - _Harry J. Smith_, Apr 23 2009
%t LandauRamanujan[n_] := N[Product[ ((1 - 2^(-2^k)) 4^(2^k) Zeta[2^k]/(Zeta[2^k, 1/4] - Zeta[2^k, 3/4]))^(2^(-k-1)), {k, n}]/Sqrt@2, 2^7]; ContinuedFraction@LandauRamanujan@8
%Y Cf. A064533 (decimal expansion).
%K cofr,nonn
%O 0,3
%A _Robert G. Wilson v_, Dec 07 2006
%E Offset changed by _Andrew Howroyd_, Aug 09 2024