login
A125711
In the "3x+1" problem, let 1 denote a halving step and 0 denote an x->3x+1 step. Then a(n) is obtained by writing the sequence of steps needed to reach 1 from 2n and reading it as a decimal number.
6
1, 3, 175, 7, 47, 431, 87791, 15, 743151, 111, 22255, 943, 751, 218863, 175087, 31, 5871, 1791727, 1431279, 239, 191, 55023, 44015, 1967, 11917039, 1775, 3515647479163389605506303638875119, 481007, 382703, 437231
OFFSET
1,2
EXAMPLE
6 -> 3 -> 10 -> 5 -> 16 -> 8 -> 4 -> 2 -> 1, so a(3) is the decimal equivalent of 10101111, which is 175.
MATHEMATICA
f[x_] := If[EvenQ[x], x/2, 3x + 1]; g[n_] := FromDigits[Mod[Most[NestWhileList[f, 2n, # > 1 &]], 2, 1] - 1, 2]; Table[g[n], {n, 40}] (* Ray Chandler, Feb 02 2007 *)
CROSSREFS
Sequence in context: A299304 A299462 A300105 * A268949 A113270 A091324
KEYWORD
nonn,base
AUTHOR
N. J. A. Sloane, Feb 01 2007
EXTENSIONS
Extended by Ray Chandler, Feb 02 2007
STATUS
approved