login
This site is supported by donations to The OEIS Foundation.

 

Logo

Annual Appeal: Please make a donation (tax deductible in USA) to keep the OEIS running. Over 5000 articles have referenced us, often saying "we discovered this result with the help of the OEIS".

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A125653 Triangle T, read by rows, where column k equals the eigensequence of matrix power T^k. 7
1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 4, 3, 1, 1, 1, 9, 8, 4, 1, 1, 1, 24, 24, 13, 5, 1, 1, 1, 75, 84, 47, 19, 6, 1, 1, 1, 269, 335, 195, 79, 26, 7, 1, 1, 1, 1091, 1495, 908, 372, 121, 34, 8, 1, 1, 1, 4940, 7381, 4674, 1947, 631, 174, 43, 9, 1, 1, 1, 24699, 39912, 26327, 11177, 3632 (list; table; graph; refs; listen; history; text; internal format)
OFFSET

0,8

LINKS

Table of n, a(n) for n=0..71.

FORMULA

T(n,k) = Sum_{j=0..n-k-1} [T^k](n-k-1,j)*T(j+k,k) for n>k>=0 with T(n,n)=1 for n>=0, where [T^k] denotes the matrix k power of T.

EXAMPLE

Triangle T begins:

1;

1, 1;

1, 1, 1;

1, 2, 1, 1;

1, 4, 3, 1, 1;

1, 9, 8, 4, 1, 1;

1, 24, 24, 13, 5, 1, 1;

1, 75, 84, 47, 19, 6, 1, 1;

1, 269, 335, 195, 79, 26, 7, 1, 1;

1, 1091, 1495, 908, 372, 121, 34, 8, 1, 1;

1, 4940, 7381, 4674, 1947, 631, 174, 43, 9, 1, 1;

1, 24699, 39912, 26327, 11177, 3632, 989, 239, 53, 10, 1, 1; ...

Column 1 is the eigensequence of this triangle T:

T(5,1) = 1*(1) + 2*(1) + 1*(2) + 1*(4) = 9;

T(6,1) = 1*(1) + 4*(1) + 3*(2) + 1*(4) + 1*(9) = 24;

T(7,1) = 1*(1) + 9*(1) + 8*(2) + 4*(4) + 1*(9) + 1*(24) = 75.

Matrix square T^2 begins:

1;

2, 1;

3, 2, 1;

5, 5, 2, 1;

10, 13, 7, 2, 1;

24, 38, 23, 9, 2, 1;

69, 127, 84, 35, 11, 2, 1 ...

Column 2 of T is the eigensequence of matrix square T^2:

T(5,2) = 3*(1) + 2*(1) + 1*(3) = 8;

T(6,2) = 5*(1) + 5*(1) + 2*(3) + 1*(8) = 24;

T(7,2) = 10*(1) + 13*(1) + 7*(3) + 2*(8) + 1*(24) = 84.

Matrix cube T^3 begins:

1;

3, 1;

6, 3, 1;

13, 9, 3, 1;

33, 28, 12, 3, 1;

97, 96, 46, 15, 3, 1;

329, 367, 192, 67, 18, 3, 1 ...

Column 3 of T is the eigensequence of matrix cube T^3:

T(6,3) = 6*(1) + 3*(1) + 1*(4) = 13;

T(7,3) = 13*(1) + 9*(1) + 3*(4) + 1*(13) = 47;

T(8,3) = 33*(1) + 28*(1) + 12*(4) + 3*(13) + 1*(47) = 195.

PROG

(PARI) {T(n, k)=local(M); M=matrix(n, n, r, c, if(r>=c, T(r-1, c-1))); if(n<k|k<0, 0, if(n==k, 1, sum(j=k, n-1, (M^k)[n-k, j-k+1]*T(j, k))))}

CROSSREFS

Rows: A125654, A125655, A125656, A125657; A125658 (row sums); A125659 (central terms).

Sequence in context: A131508 A140130 A220632 * A104445 A000189 A000190

Adjacent sequences:  A125650 A125651 A125652 * A125654 A125655 A125656

KEYWORD

nonn,tabl

AUTHOR

Paul D. Hanna, Nov 30 2006

EXTENSIONS

Example corrected by Paul D. Hanna, Oct 29 2010

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy .

Last modified December 7 19:05 EST 2016. Contains 278895 sequences.