login
This site is supported by donations to The OEIS Foundation.

 

Logo

Invitation: celebrating 50 years of OEIS, 250000 sequences, and Sloane's 75th, there will be a conference at DIMACS, Rutgers, Oct 9-10 2014.

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A125653 Triangle T, read by rows, where column k equals the eigensequence of matrix power T^k. 7
1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 4, 3, 1, 1, 1, 9, 8, 4, 1, 1, 1, 24, 24, 13, 5, 1, 1, 1, 75, 84, 47, 19, 6, 1, 1, 1, 269, 335, 195, 79, 26, 7, 1, 1, 1, 1091, 1495, 908, 372, 121, 34, 8, 1, 1, 1, 4940, 7381, 4674, 1947, 631, 174, 43, 9, 1, 1, 1, 24699, 39912, 26327, 11177, 3632 (list; table; graph; refs; listen; history; text; internal format)
OFFSET

0,8

LINKS

Table of n, a(n) for n=0..71.

FORMULA

T(n,k) = Sum_{j=0..n-k-1} [T^k](n-k-1,j)*T(j+k,k) for n>k>=0 with T(n,n)=1 for n>=0, where [T^k] denotes the matrix k power of T.

EXAMPLE

Triangle T begins:

1;

1, 1;

1, 1, 1;

1, 2, 1, 1;

1, 4, 3, 1, 1;

1, 9, 8, 4, 1, 1;

1, 24, 24, 13, 5, 1, 1;

1, 75, 84, 47, 19, 6, 1, 1;

1, 269, 335, 195, 79, 26, 7, 1, 1;

1, 1091, 1495, 908, 372, 121, 34, 8, 1, 1;

1, 4940, 7381, 4674, 1947, 631, 174, 43, 9, 1, 1;

1, 24699, 39912, 26327, 11177, 3632, 989, 239, 53, 10, 1, 1; ...

Column 1 is the eigensequence of this triangle T:

T(5,1) = 1*(1) + 2*(1) + 1*(2) + 1*(4) = 9;

T(6,1) = 1*(1) + 4*(1) + 3*(2) + 1*(4) + 1*(9) = 24;

T(7,1) = 1*(1) + 9*(1) + 8*(2) + 4*(4) + 1*(9) + 1*(24) = 75.

Matrix square T^2 begins:

1;

2, 1;

3, 2, 1;

5, 5, 2, 1;

10, 13, 7, 2, 1;

24, 38, 23, 9, 2, 1;

69, 127, 84, 35, 11, 2, 1 ...

Column 2 of T is the eigensequence of matrix square T^2:

T(5,2) = 3*(1) + 2*(1) + 1*(3) = 8;

T(6,2) = 5*(1) + 5*(1) + 2*(3) + 1*(8) = 24;

T(7,2) = 10*(1) + 13*(1) + 7*(3) + 2*(8) + 1*(24) = 84.

Matrix cube T^3 begins:

1;

3, 1;

6, 3, 1;

13, 9, 3, 1;

33, 28, 12, 3, 1;

97, 96, 46, 15, 3, 1;

329, 367, 192, 67, 18, 3, 1 ...

Column 3 of T is the eigensequence of matrix cube T^3:

T(6,3) = 6*(1) + 3*(1) + 1*(4) = 13;

T(7,3) = 13*(1) + 9*(1) + 3*(4) + 1*(13) = 47;

T(8,3) = 33*(1) + 28*(1) + 12*(4) + 3*(13) + 1*(47) = 195.

PROG

(PARI) {T(n, k)=local(M); M=matrix(n, n, r, c, if(r>=c, T(r-1, c-1))); if(n<k|k<0, 0, if(n==k, 1, sum(j=k, n-1, (M^k)[n-k, j-k+1]*T(j, k))))}

CROSSREFS

Rows: A125654, A125655, A125656, A125657; A125658 (row sums); A125659 (central terms).

Sequence in context: A131508 A140130 A220632 * A104445 A000189 A000190

Adjacent sequences:  A125650 A125651 A125652 * A125654 A125655 A125656

KEYWORD

nonn,tabl

AUTHOR

Paul D. Hanna, Nov 30 2006

EXTENSIONS

Example corrected by Paul D. Hanna, Oct 29 2010

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

Content is available under The OEIS End-User License Agreement .

Last modified September 22 06:22 EDT 2014. Contains 247039 sequences.