login
Primes p=prime(i) of level (1,16), i.e., such that A118534(i)=prime(i-16).
6

%I #25 Jun 19 2021 12:44:25

%S 356604959,613768081,709208323,950803363,979872743,1174872271,

%T 1186433617,1625945609,1796767963,1840621901,2348698453,2547482281,

%U 3385901059,3446679371,3512406283,3735873397,4080198391,4106437259,4319987921,4695419887,5285414713,5288810297

%N Primes p=prime(i) of level (1,16), i.e., such that A118534(i)=prime(i-16).

%C This subsequence of A125830 and of A162174 gives primes of level (1,16): If prime(i) has level 1 in A117563 and 2*prime(i) - prime(i+1) = prime(i-k), then we say that prime(i) has level (1,k).

%H Fabien Sibenaler, <a href="/A125623/b125623.txt">Table of n, a(n) for n = 1..60</a>

%e prime(48470200) - prime(48470199) = 950803519 - 950803363 = 950803363 - 950803207 = prime(48470199) - prime(48470199-16) and prime(48470199) has level 1 in A117563, so prime(48470199) = 950803363 has level (1,16).

%o (PARI) lista(nn) = my(v=primes(17)); forprime(p=61, nn, if(2*v[17]-p==v[1], print1(v[17], ", ")); v=concat(v[2..17], p)); \\ _Jinyuan Wang_, Jun 18 2021

%Y Cf. A117078, A117563, A006562 (primes of level (1,1)), A117876, A118464, A118467, A119402, A119403, A119404.

%K nonn

%O 1,1

%A _RĂ©mi Eismann_ and _Fabien Sibenaler_, Jan 27 2007

%E Definition and comment reworded following suggestions from the authors. - _M. F. Hasler_, Nov 30 2009