login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A124437 Experience Points thresholds for levels in the P&P-RPG "Das Schwarze Auge" (DSA, aka "The Dark Eye"). 0
0, 100, 300, 600, 1000, 1500, 2100, 2800, 3600, 4500, 5500, 6600, 7800, 9100, 10500, 12000, 13600, 15300, 17100, 19000, 21000, 23100, 25300, 27600, 30000, 32500, 35100, 37800, 40600, 43500, 46500, 49600, 52800, 56100, 59500, 63000, 66600 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,2

REFERENCES

"Das Schwarze Auge - Basisregelwerk" (basic rule book), Fantasy Productions Verlags- und Medienvertriebsgesellschaft mbH, Erkrath, Germany, 2005, ISBN 3890644406

LINKS

Table of n, a(n) for n=1..37.

Index entries for linear recurrences with constant coefficients, signature (3,-3,1).

FORMULA

a(n) = a(n-1)+(n-1)*100; a(1) = 0.

From Chai Wah Wu, Jul 11 2016: (Start)

a(n) = 50*n*(n-1).

a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3) for n > 3.

G.f.: 100*x^2/(1 - x)^3. (End)

EXAMPLE

a(7)=2100 because a(6)+(7-1)*100 = (a(5)+500)+600 =(((((0+100)+200)+300)+400)+500)+600.

MATHEMATICA

Table[50 n (n - 1), {n, 37}] (* or *)

CoefficientList[Series[100 x^2/(1 - x)^3, {x, 0, 37}], x] (* Michael De Vlieger, Jul 11 2016 *)

LinearRecurrence[{3, -3, 1}, {0, 100, 300}, 40] (* Harvey P. Dale, Jun 26 2017 *)

PROG

(C) int folge(n){ if (n==1) return 0; return (folge(n-1)+(n-1)*100); }

(PARI) a(n)=50*n*(n-1) \\ Charles R Greathouse IV, Jun 17 2017

CROSSREFS

Sequence in context: A261276 A104908 A109633 * A138668 A017174 A202334

Adjacent sequences:  A124434 A124435 A124436 * A124438 A124439 A124440

KEYWORD

easy,nonn

AUTHOR

Christoph D. Schmidt (snu(AT)power.ms), Dec 16 2006, Dec 21 2006

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified October 16 23:30 EDT 2019. Contains 328103 sequences. (Running on oeis4.)