OFFSET
1,9
REFERENCES
Rosenblum and Rovnyak, Hardy Classes and Operator Theory, Dover, New York, 1985, page 26.
LINKS
Martin H. Gutknecht and Lloyd N. Trefethen, Real Polynomial Chebyshev Approximation by the Caratheodory-Fejer Method, SIAM Journal on Numerical Analysis, Vol. 19, No. 2 (Apr., 1982), pp. 358-371.
EXAMPLE
Triangle begins:
1;
1, -1;
-1, -1, 1;
-1, 0, 3, -1;
1, 1, -4, -4, 1;
1, 0, -6, 0, 8, -1;
-1, -1, 7, 7, -12, -12, 1;
-1, 0, 9, 0, -25, 0, 21, -1;
1, 1, -10, -10, 32, 32, -33, -33, 1;
Polynomials:
1;
1 - x;
-1 - x + x^2;
-1 + 3*x^2 - x^3;
1 + x - 4*x^2 - 4*x^3 + x^4;
1 - 6*x^2 + 8*x^4 - x^5;
-1 - x + 7*x^2 + 7*x^3 - 12*x^4 - 12*x^5 + x^6;
...
MATHEMATICA
An[d_] := Table[If[n + m - 1 > d, 0, Fibonacci[d - (n + m - 1) + 1]], {n, 1, d}, {m, 1, d}];
Join[{{1}}, Table[CoefficientList[CharacteristicPolynomial[An[d], x], x], {d, 1, 20}]]; Flatten[%]
CROSSREFS
KEYWORD
AUTHOR
Roger L. Bagula and Gary W. Adamson, Oct 25 2006
STATUS
approved