login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A123482
Coefficients of the series giving the best rational approximations to sqrt(11).
5
60, 23940, 9528120, 3792167880, 1509273288180, 600686976527820, 239071907384784240, 95150018452167599760, 37869468272055319920300, 15071953222259565160679700, 5998599512991034878630600360, 2387427534217209622129818263640, 950190160018936438572789038328420
OFFSET
1,1
COMMENTS
The partial sums of the series 10/3 - 1/a(1) - 1/a(2) - 1/a(3) - ... give the best rational approximations to sqrt(11), which constitute every second convergent of the continued fraction. The corresponding continued fractions are [3;3,6,3], [3;3,6,3,6,3], [3;3,6,3,6,3,6,3] and so forth.
FORMULA
a(n+3) = 399*a(n+2) - 399*a(n+1) + a(n).
a(n) = -5/33 + (5/66 + 1/44*11^(1/2))*(199 + 60*11^(1/2))^n + (5/66 - 1/44*11^(1/2))*(199 - 60*11^(1/2))^n.
G.f.: -60*x / ((x-1)*(x^2-398*x+1)). - Colin Barker, Jun 23 2014
MATHEMATICA
CoefficientList[Series[-60*x/((x - 1)*(x^2 - 398*x + 1)), {x, 0, 50}], x] (* G. C. Greubel, Oct 13 2017 *)
PROG
(PARI) Vec(-60*x/((x-1)*(x^2-398*x+1)) + O(x^100)) \\ Colin Barker, Jun 23 2014
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Gene Ward Smith, Oct 02 2006
EXTENSIONS
More terms from Colin Barker, Jun 23 2014
STATUS
approved