login
Triangle of coefficients of (1 - x)^n*U(n,-(3*x - 2)/(2*x - 2)), where U(n,x) is the n-th Chebyshev polynomial of the second kind.
14

%I #22 Jul 16 2021 01:34:02

%S 1,-2,3,3,-10,8,-4,22,-38,21,5,-40,111,-130,55,-6,65,-256,474,-420,

%T 144,7,-98,511,-1324,1836,-1308,377,-8,140,-924,3130,-6020,6666,-3970,

%U 987,9,-192,1554,-6588,16435,-25088,23109,-11822,2584,-10,255,-2472,12720,-39430,77645,-98160,77378,-34690,6765

%N Triangle of coefficients of (1 - x)^n*U(n,-(3*x - 2)/(2*x - 2)), where U(n,x) is the n-th Chebyshev polynomial of the second kind.

%C The n-th row consists of the coefficients in the expansion of Sum_{j=0..n} A053122(n,j)*x^j*(1 - x)^(n - j).

%H G. C. Greubel, <a href="/A123027/b123027.txt">Rows n = 0..50 of the triangle, flattened</a>

%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/ChebyshevPolynomialoftheSecondKind.html">Chebyshev Polynomial of the Second Kind</a>

%H Wikipedia, <a href="https://en.wikipedia.org/wiki/Chebyshev_polynomials">Chebyshev polynomials</a>

%F From _Franck Maminirina Ramaharo_, Oct 10 2018: (Start)

%F Row n = coefficients in the expansion of (1/sqrt((5*x - 4)*x))*(((3*x - 2 + sqrt((5*x - 4)*x))/2)^(n + 1) - ((3*x - 2 - sqrt((5*x - 4)*x))/2)^(n + 1)).

%F G.f.: 1/(1 + (2 - 3*x)*t + (1 - x)^2*t^2).

%F E.g.f.: exp(t*(3*x - 2)/2)*(sqrt((5*x - 4)*x)*cosh(t*sqrt((5*x - 4)*x)/2) + (3*x - 2)*sinh(t*sqrt((5*x - 4)*x)/2))/sqrt((5*x - 4)*x).

%F T(n,1) = (-1)^(n+1)*A006503(n).

%F T(n,n) = A001906(n+1). (End)

%e Triangle begins:

%e 1;

%e -2, 3;

%e 3, -10, 8;

%e -4, 22, 38, 21;

%e 5, -40, 111, -130, 55;

%e -6, 65, -256, 474, -420, 144;

%e 7, -98, 511, -1324, 1836, -1308, 377;

%e -8, 140, -924, 3130, -6020, 6666, -3970, 987;

%e 9, -192, 1554, -6588, 16435, -25088, 23109, -11822, 2584;

%e ... reformatted and extended. _Franck Maminirina Ramaharo_, Oct 10 2018

%t b0 = Table[CoefficientList[ChebyshevU[n, x/2 -1], x], {n, 0, 10}];

%t Table[CoefficientList[Sum[b0[[m+1]][[n+1]]*x^n*(1-x)^(m-n), {n,0,m}], x], {m,0,10}]//Flatten

%t (* Alternative Adamson Matrix method *)

%t t[n_, m_] = If[n==m, 2, If[n==m-1 || n==m+1, 1, 0]];

%t M[d_] := Table[t[n, m], {n, d}, {m, d}];

%t a = Join[{{1}}, Table[CoefficientList[Det[M[d] - x*IdentityMatrix[d]], x], {d, 1, 10}]];

%t Table[CoefficientList[Sum[a[[m+1]][[n+1]]*x^n*(1-x)^(m-n), {n, 0, m}], x], {m, 0, 10}]//Flatten

%o (Maxima)

%o A053122(n, k) := if n < k then 0 else ((-1)^(n - k))*binomial(n + k + 1, 2*k + 1)$

%o P(x, n) := expand(sum(A053122(n, j)*x^j*(1 - x)^(n - j), j, 0, n))$

%o T(n, k) := ratcoef(P(x, n), x, k)$

%o tabl(nn) := for n:0 thru nn do print(makelist(T(n, k), k, 0, hipow(P(x, n), x)))$ /* _Franck Maminirina Ramaharo_, Oct 10 2018 */

%o (Sage)

%o def A053122(n, k): return 0 if (n<k) else (-1)^(n-k)*binomial(n+k+1, 2*k+1)

%o def p(n,x): return sum( A053122(n, j)*x^j*(1-x)^(n-j) for j in (0..n) )

%o def T(n): return ( p(n,x) ).full_simplify().coefficients(sparse=False)

%o flatten([T(n) for n in (0..12)]) # _G. C. Greubel_, Jul 15 2021

%Y Cf. A008310, A049310, A053122, A111006.

%Y Cf. A122753, A123018, A123019, A123021, A123199, A123202, A123217, A123221.

%K sign,tabl

%O 0,2

%A _Roger L. Bagula_ and _Gary W. Adamson_, Sep 24 2006

%E Edited, new name, and offset corrected by _Franck Maminirina Ramaharo_, Oct 10 2018