login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A122656
a(n) = n*floor(n/2)^2.
2
0, 0, 2, 3, 16, 20, 54, 63, 128, 144, 250, 275, 432, 468, 686, 735, 1024, 1088, 1458, 1539, 2000, 2100, 2662, 2783, 3456, 3600, 4394, 4563, 5488, 5684, 6750, 6975, 8192, 8448, 9826, 10115, 11664, 11988, 13718, 14079, 16000, 16400, 18522, 18963, 21296, 21780
OFFSET
0,3
COMMENTS
Szeged index of cycle of length n.
LINKS
Janez Žerovnik, Szeged index of symmetric graphs, J. Chem. Inf. Comput. Sci., 39 (1999), 77-80; alternative link.
FORMULA
a(n) = (n*(1-(-1)^n+2*(-1+(-1)^n)*n+2*n^2))/8. G.f.: x^2*(x^4+x^3+7*x^2+x+2) / ((x-1)^4*(x+1)^3). - Colin Barker, Sep 20 2013
a(n) = n*A008794(n). - R. J. Mathar, Mar 04 2018
Sum_{n>=2} 1/a(n) = zeta(3)/2 + zeta(2) + 4*(log(2)-1). - Amiram Eldar, May 15 2024
MATHEMATICA
Table[n Floor[n/2]^2, {n, 0, 50}] (* or *) LinearRecurrence[ {1, 3, -3, -3, 3, 1, -1}, {0, 0, 2, 3, 16, 20, 54}, 50] (* Harvey P. Dale, May 31 2014 *)
PROG
(Magma) [n*Floor(n/2)^2: n in [0..50]]; // Vincenzo Librandi, May 31 2014
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
N. J. A. Sloane, Sep 22 2006
STATUS
approved