login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A122550 Floor of the slanted side of a right trapezoid formed by 3 consecutive primes. 0
4, 6, 9, 12, 14, 18, 19, 25, 30, 32, 38, 41, 43, 48, 54, 59, 61, 67, 71, 73, 79, 83, 90, 97, 101, 103, 107, 109, 114, 128, 131, 137, 139, 149, 151, 157, 163, 167, 173, 179, 181, 191, 193, 197, 199, 212, 223, 227, 229, 233, 239, 241, 251, 257, 263, 269, 271, 277 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,1

COMMENTS

It is easy to prove that for any 3 consecutive primes p1,p2,p3, a(n) always lies between p2 and p3.

LINKS

Table of n, a(n) for n=1..58.

EXAMPLE

For the first 3 prime numbers, go up 2, go right 3 and go down 5. Connecting the figure to form a right trapezoid we have the slanted side = sqrt(18). The integer part of this is 4, the first term of the sequence.

PROG

(PARI) g(n) = { for(x=1, n, p1=prime(x); p2=prime(x+1); p3=prime(x+2); y=p3-p1; print1(floor(sqrt(p2^2+y^2)), ", ")) )

CROSSREFS

Sequence in context: A189533 A047408 A060644 * A191407 A076083 A094202

Adjacent sequences:  A122547 A122548 A122549 * A122551 A122552 A122553

KEYWORD

easy,nonn

AUTHOR

Cino Hilliard, Sep 20 2006

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified March 18 17:51 EDT 2019. Contains 321292 sequences. (Running on oeis4.)