OFFSET
1,1
LINKS
Vincenzo Librandi, Table of n, a(n) for n = 1..1000
J. Berstel, An Exercise on Fibonacci Representations, RAIRO/Informatique Theorique, Vol. 35, No 6, 2001, pp. 491-498, in the issue dedicated to Aldo De Luca on the occasion of his 60th anniversary.
M. Bicknell-Johnson & D. C. Fielder, The number of Representations of N Using Distinct Fibonacci Numbers, Counted by Recursive Formulas, Fibonacci Quart. 37.1 (1999) pp. 47 ff.
Ron Knott Sumthing about Fibonacci Numbers
Index entries for linear recurrences with constant coefficients, signature (1,1,-1,1,-1).
FORMULA
EXAMPLE
a(1)=3 as 3 is the sum of just 2 Fibonacci sets {3=Fibonacci(4)} and {1=Fibonacci(2), 2=Fibonacci(3)};
a(2)=5 as 5 is sum of Fibonacci sets {5} and {2,3} only.
MAPLE
fib:= combinat[fibonacci]:
lucas:=n->fib(n-1)+fib(n+1):
a:=n -> if n mod 2 = 0 then 2 *fib(n/2+3) -1 else lucas((n+1)/2+2)-1 fi:
seq(a(n), n=1..50);
MATHEMATICA
LinearRecurrence[{1, 1, -1, 1, -1}, {3, 5, 6, 9, 10, 15}, 40] (* Vincenzo Librandi, Jul 25 2017 *)
Table[If[Mod[n, 2]==0, 2*Fibonacci[(n+6)/2]-1, LucasL[(n+5)/2]-1], {n, 50}] (* G. C. Greubel, Jul 13 2019 *)
PROG
(PARI) vector(50, n, f=fibonacci; if(n%2==0, 2*f((n+6)/2)-1, f((n+7)/2) + f((n+3)/2)-1)) \\ G. C. Greubel, Jul 13 2019
(Magma) f:=Floor; [(n mod 2) eq 0 select 2*Fibonacci(f((n+6)/2))-1 else Lucas(f((n+5)/2))-1: n in [1..50]]; // G. C. Greubel, Jul 13 2019
(Sage)
def a(n):
if (mod(n, 2)==0): return 2*fibonacci((n+6)/2) - 1
else: return lucas_number2((n+5)/2, 1, -1) -1
[a(n) for n in (1..50)] # G. C. Greubel, Jul 13 2019
(GAP)
a:= function(n)
if n mod 2=0 then return 2*Fibonacci(Int((n+6)/2)) -1;
else return Lucas(1, -1, Int((n+5)/2))[2] -1;
fi;
end;
List([1..50], n-> a(n) ); # G. C. Greubel, Jul 13 2019
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Ron Knott, Aug 25 2006
STATUS
approved