login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A122194 Numbers that are the sum of exactly two sets of Fibonacci numbers. 2
3, 5, 6, 9, 10, 15, 17, 25, 28, 41, 46, 67, 75, 109, 122, 177, 198, 287, 321, 465, 520, 753, 842, 1219, 1363, 1973, 2206, 3193, 3570, 5167, 5777, 8361, 9348, 13529, 15126, 21891, 24475, 35421, 39602, 57313, 64078, 92735, 103681, 150049, 167760, 242785 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,1

LINKS

Vincenzo Librandi, Table of n, a(n) for n = 1..1000

J. Berstel, An Exercise on Fibonacci Representations, RAIRO/Informatique Theorique, Vol. 35, No 6, 2001, pp. 491-498, in the issue dedicated to Aldo De Luca on the occasion of his 60th anniversary.

M. Bicknell-Johnson & D. C. Fielder, The number of Representations of N Using Distinct Fibonacci Numbers, Counted by Recursive Formulas, Fibonacci Quart. 37.1 (1999) pp. 47 ff.

Ron Knott Sumthing about Fibonacci Numbers

Index entries for linear recurrences with constant coefficients, signature (1,1,-1,1,-1).

FORMULA

a(2n-1) = A000032(n+2) - 1,

a(2n) = 2*A000045(n+3) - 1.

a(2n-1) = A001610(n+2), a(2n) = A001595(n+2).

a(1)=3, a(2)=5, a(3)=6, a(4)=9, a(n) = a(n-2) + a(n-4) + 1, n > 4.

G.f.: (3 + 2*x - 2*x^2 + x^3 - 3*x^4)/(1-x-x^2+x^3-x^4+x^5).

EXAMPLE

a(1)=3 as 3 is the sum of just 2 Fibonacci sets {3=Fibonacci(4)} and {1=Fibonacci(2), 2=Fibonacci(3)};

a(2)=5 as 5 is sum of Fibonacci sets {5} and {2,3} only.

MAPLE

fib:= combinat[fibonacci]:

lucas:=n->fib(n-1)+fib(n+1):

a:=n -> if n mod 2 = 0 then 2 *fib(n/2+3) -1 else lucas((n+1)/2+2)-1 fi:

seq(a(n), n=1..50);

MATHEMATICA

LinearRecurrence[{1, 1, -1, 1, -1}, {3, 5, 6, 9, 10, 15}, 40] (* Vincenzo Librandi, Jul 25 2017 *)

Table[If[Mod[n, 2]==0, 2*Fibonacci[(n+6)/2]-1, LucasL[(n+5)/2]-1], {n, 50}] (* G. C. Greubel, Jul 13 2019 *)

PROG

(PARI) vector(50, n, f=fibonacci; if(n%2==0, 2*f((n+6)/2)-1, f((n+7)/2) + f((n+3)/2)-1)) \\ G. C. Greubel, Jul 13 2019

(MAGMA) f:=Floor; [(n mod 2) eq 0 select 2*Fibonacci(f((n+6)/2))-1 else Lucas(f((n+5)/2))-1: n in [1..50]]; // G. C. Greubel, Jul 13 2019

(Sage)

def a(n):

    if (mod(n, 2)==0): return 2*fibonacci((n+6)/2) - 1

    else: return lucas_number2((n+5)/2, 1, -1) -1

[a(n) for n in (1..50)] # G. C. Greubel, Jul 13 2019

(GAP)

a:= function(n)

    if n mod 2=0 then return 2*Fibonacci(Int((n+6)/2)) -1;

    else return Lucas(1, -1, Int((n+5)/2))[2] -1;

    fi;

  end;

List([1..50], n-> a(n) ); # G. C. Greubel, Jul 13 2019

CROSSREFS

Cf. A000032, A000045, A000071, A000119, A013583, A122195.

Sequence in context: A182050 A094598 A263654 * A225005 A053091 A324701

Adjacent sequences:  A122191 A122192 A122193 * A122195 A122196 A122197

KEYWORD

nonn,easy

AUTHOR

Ron Knott, Aug 25 2006

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified October 16 05:23 EDT 2019. Contains 328043 sequences. (Running on oeis4.)