login
A122194
Numbers that are the sum of exactly two sets of Fibonacci numbers.
2
3, 5, 6, 9, 10, 15, 17, 25, 28, 41, 46, 67, 75, 109, 122, 177, 198, 287, 321, 465, 520, 753, 842, 1219, 1363, 1973, 2206, 3193, 3570, 5167, 5777, 8361, 9348, 13529, 15126, 21891, 24475, 35421, 39602, 57313, 64078, 92735, 103681, 150049, 167760, 242785
OFFSET
1,1
LINKS
J. Berstel, An Exercise on Fibonacci Representations, RAIRO/Informatique Theorique, Vol. 35, No 6, 2001, pp. 491-498, in the issue dedicated to Aldo De Luca on the occasion of his 60th anniversary.
M. Bicknell-Johnson & D. C. Fielder, The number of Representations of N Using Distinct Fibonacci Numbers, Counted by Recursive Formulas, Fibonacci Quart. 37.1 (1999) pp. 47 ff.
FORMULA
a(2n-1) = A000032(n+2) - 1,
a(2n) = 2*A000045(n+3) - 1.
a(2n-1) = A001610(n+2), a(2n) = A001595(n+2).
a(1)=3, a(2)=5, a(3)=6, a(4)=9, a(n) = a(n-2) + a(n-4) + 1, n > 4.
G.f.: (3 + 2*x - 2*x^2 + x^3 - 3*x^4)/(1-x-x^2+x^3-x^4+x^5).
a(n) = A272632(n)-1. - R. J. Mathar, Jan 13 2023
EXAMPLE
a(1)=3 as 3 is the sum of just 2 Fibonacci sets {3=Fibonacci(4)} and {1=Fibonacci(2), 2=Fibonacci(3)};
a(2)=5 as 5 is sum of Fibonacci sets {5} and {2,3} only.
MAPLE
fib:= combinat[fibonacci]:
lucas:=n->fib(n-1)+fib(n+1):
a:=n -> if n mod 2 = 0 then 2 *fib(n/2+3) -1 else lucas((n+1)/2+2)-1 fi:
seq(a(n), n=1..50);
MATHEMATICA
LinearRecurrence[{1, 1, -1, 1, -1}, {3, 5, 6, 9, 10, 15}, 40] (* Vincenzo Librandi, Jul 25 2017 *)
Table[If[Mod[n, 2]==0, 2*Fibonacci[(n+6)/2]-1, LucasL[(n+5)/2]-1], {n, 50}] (* G. C. Greubel, Jul 13 2019 *)
PROG
(PARI) vector(50, n, f=fibonacci; if(n%2==0, 2*f((n+6)/2)-1, f((n+7)/2) + f((n+3)/2)-1)) \\ G. C. Greubel, Jul 13 2019
(Magma) f:=Floor; [(n mod 2) eq 0 select 2*Fibonacci(f((n+6)/2))-1 else Lucas(f((n+5)/2))-1: n in [1..50]]; // G. C. Greubel, Jul 13 2019
(Sage)
def a(n):
if (mod(n, 2)==0): return 2*fibonacci((n+6)/2) - 1
else: return lucas_number2((n+5)/2, 1, -1) -1
[a(n) for n in (1..50)] # G. C. Greubel, Jul 13 2019
(GAP)
a:= function(n)
if n mod 2=0 then return 2*Fibonacci(Int((n+6)/2)) -1;
else return Lucas(1, -1, Int((n+5)/2))[2] -1;
fi;
end;
List([1..50], n-> a(n) ); # G. C. Greubel, Jul 13 2019
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Ron Knott, Aug 25 2006
STATUS
approved