login
Expansion of -x*(8*x^7-33*x^6-30*x^5+88*x^4+35*x^3-33*x^2-11*x-1)/((x^4-x^3-3*x^2+x+1)*(x^4+x^3-3*x^2-x+1)).
1

%I #15 Jul 24 2015 18:54:27

%S 1,11,40,42,179,181,773,790,3363,3460,14705,15175,64448,66594,282739,

%T 292313,1240921,1283234,5447271,5633552,23913649,24732419,104984728,

%U 108581082,460905635,476697757,2023486253,2092823614,8883609963

%N Expansion of -x*(8*x^7-33*x^6-30*x^5+88*x^4+35*x^3-33*x^2-11*x-1)/((x^4-x^3-3*x^2+x+1)*(x^4+x^3-3*x^2-x+1)).

%H <a href="/index/Rec#order_08">Index entries for linear recurrences with constant coefficients</a>, signature (0, 7, 0, -13, 0, 7, 0, -1).

%F G.f.: -x*(8*x^7-33*x^6-30*x^5+88*x^4+35*x^3-33*x^2-11*x-1)/((x^4-x^3-3*x^2+x+1)*(x^4+x^3-3*x^2-x+1)). [_Colin Barker_, Aug 02 2012]

%t M = {{0, 1, 1, 0, 0, 1, 0, 0}, {1, 0, 0, 1, 0, 0, 1, 0}, {1, 0, 0, 0, 0, 0, 0, 1}, {0, 1, 0, 0, 1, 0, 0, 0}, {0, 0, 0, 1, 0, 0, 0, 0}, {1, 0, 0, 0, 0, 0, 0, 0}, {0, 1, 0, 0, 0, 0, 0, 0}, {0, 0, 1, 0, 0, 0, 0, 0}} v[1] = Table[Fibonacci[n], {n, 1, 8}] v[n_] := v[n] = M.v[n - 1] a = Table[Floor[v[n][[1]]], {n, 1, 50}]

%K nonn,easy,less

%O 1,2

%A _Roger L. Bagula_, Sep 11 2006

%E Definition reformulated (with Barker's formula) from _Joerg Arndt_, Aug 02 2012