login
Array read by antidiagonals: a(m,n) = a(m,n-1)+a(m-1,n) but with initialization values a(0,0)=0, a(m>=1,0)=1, a(0,1)=1, a(0,n>1)=0.
4

%I #7 Jul 03 2016 00:15:22

%S 2,2,3,2,5,4,2,7,9,5,2,9,16,14,6,2,11,25,30,20,7,2,13,36,55,50,27,8,2,

%T 15,49,91,105,77,35,9,2,17,64,140,196,182,112,44,10,19,81,204,336,378,

%U 294,156,54,100,285,540,714,672,450,210,385,825,1254,1386,1122

%N Array read by antidiagonals: a(m,n) = a(m,n-1)+a(m-1,n) but with initialization values a(0,0)=0, a(m>=1,0)=1, a(0,1)=1, a(0,n>1)=0.

%C For a(1,0)=1, a(m>1,0)=0 and a(0,n>=0)=0 one gets Pascal's triangle A007318.

%F a(m,n) = a(m,n-1)+a(m-1,n), a(0,0)=0, a(m>=1,0)=1, a(0,1)=1, a(0,n>1)=0.

%e Array begins

%e 2 2 2 2 2 2 2 2 2 ...

%e 3 5 7 9 11 13 15 17 19 ...

%e 4 9 16 25 36 49 64 81 100 ...

%e 5 14 30 55 91 140 204 285 385 ...

%e 6 20 50 105 196 336 540 825 1210 ...

%e 7 27 77 182 378 714 1254 2079 3289 ...

%o (Excel) =Z(-1)S+ZS(-1). The very first row (not included into the table) contains the initialization values: a(0,1)=1, a(0,n>=2)=0. The very first column (not included into the table) contains the initialization values: a(m>=1,0)=1. The value a(0,0)=0 does not enter into the table.

%Y The first nine rows are: A006527, A005408, A000290, A000330, A002415, A005585, A040977, A050486, A053347.

%Y The initial columns are: A000027, A000096, A005581, A005582, A005583, A005584.

%Y Cf. A119800, A007318, A006527, A005408, A000290, A000330, A002415, A005585, A040977, A050486, A053347, A000027, A000096, A005581, A005582, A005583, A005584.

%K nonn,tabl

%O 0,1

%A _Thomas Wieder_, Aug 04 2006, Aug 06 2006

%E Edited by _N. J. A. Sloane_, Sep 15 2006