

A121266


Triangle read by rows: row n (n>= 10) gives n10 successive bases used in computing A121263(n) followed by A121263(n) itself.


6



10, 11, 11, 12, 13, 13, 13, 15, 16, 16, 14, 17, 19, 20, 20, 15, 19, 22, 24, 25, 25, 16, 21, 25, 28, 30, 31, 31, 17, 23, 28, 32, 35, 37, 38, 38, 18, 25, 31, 36, 40, 43, 45, 46, 46, 19, 27, 34, 40, 45, 49, 52, 54, 55, 55, 20, 29, 37, 44, 50, 55, 59, 62, 64, 65, 65
(list;
table;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

10,1


COMMENTS

Lefthand entry of row n is n, righthand entry is A121263(n).
A "dungeon" of numbers.


REFERENCES

David Applegate, Marc LeBrun and N. J. A. Sloane, Descending Dungeons and Iterated BaseChanging, in "The Mathematics of Preference, Choice and Order: Essays in Honor of Peter Fishburn", edited by Steven Brams, William V. Gehrlein and Fred S. Roberts, Springer, 2009, pp. 393402.


LINKS

N. J. A. Sloane, Rows 10 through 45 of triangle, flattened
David Applegate, Marc LeBrun and N. J. A. Sloane, Descending Dungeons and Iterated BaseChanging, arXiv:math/0611293 [math.NT], 20062007.
David Applegate, Marc LeBrun, N. J. A. Sloane, Descending Dungeons, Problem 11286, Amer. Math. Monthly, 116 (2009) 466467.


EXAMPLE

Triangle begins:
10
11 11
12 13 13
13 15 16 16
14 17 19 20 20
15 19 22 24 25 25
16 21 25 28 30 31 31
17 23 28 32 35 37 38 38
18 25 31 36 40 43 45 46 46
19 27 34 40 45 49 52 54 55 55
20 29 37 44 50 55 59 62 64 65 65


MAPLE

M:=45; a:=list(10..M): a[10]:=10: a[10]; for n from 11 to M do b:=n; lprint(b); for i from n1 by 1 to 11 do t1:=convert(i, base, 10); b:=add(t1[j]*b^(j1), j=1..nops(t1)): lprint(b); od: a[n]:=b; lprint(a[n]); od:


CROSSREFS

Cf. A121263.
Sequence in context: A065016 A087381 A136400 * A045988 A008947 A108787
Adjacent sequences: A121263 A121264 A121265 * A121267 A121268 A121269


KEYWORD

nonn,tabl,base,look


AUTHOR

N. J. A. Sloane, Aug 23 2006


STATUS

approved



