login
A120930
Least x satisfying n^3 + x^3 + y^3 = z^3, where (n,x,y,z),n<x<y<z forms a primitive quadruple.
2
6, 17, 4, 17, 76, 32, 14, 209, 55, 261, 15, 19, 51, 23, 42, 23, 40, 19, 53, 54, 43, 51, 81, 159, 31, 55, 30, 53, 34, 266, 33, 54, 70, 39, 77, 38, 174, 43, 146, 141, 114, 83, 230, 51, 53, 47, 75, 85, 80, 61, 82, 321, 58, 80, 113, 61, 68, 59, 93, 342, 90, 183, 228, 75, 87, 97
OFFSET
1,1
COMMENTS
There are a few small cases where the least x needs y>1000, e.g. 8^3+209^3+1744^3=1745^3. The S. Dutch link has a few nonprimitive quartets which have to be excluded for this sequence, e.g. 37^3+222^3+296^3=333^3. - Martin Fuller, Aug 11 2006
PROG
(PARI) A(n)=local(x, y, z); x=n+1; while(1, y=x+1; while(n^3+x^3+y^3>=(y+1)^3, if(ispower(n^3+x^3+y^3, 3, &z) && (gcd([n, x, y, z])==1), return(x)); y++; ); x++; ); \\ Martin Fuller, Aug 11 2006
CROSSREFS
Sequence in context: A022510 A065776 A323516 * A070395 A200871 A112366
KEYWORD
nonn
AUTHOR
Lekraj Beedassy, Jul 16 2006
EXTENSIONS
Corrected by R. J. Mathar, Nov 25 2006
STATUS
approved