OFFSET
1,2
COMMENTS
A fractal sequence f contains itself as a proper subsequence; e.g., if you delete the first occurrence of each positive integer, the remaining sequence is f; thus f properly contains itself infinitely many times.
REFERENCES
Clark Kimberling, The equation (j+k+1)^2-4*k=Q*n^2 and related dispersions, Journal of Integer Sequences 10 (2007, Article 07.2.7) 1-17.
LINKS
N. J. A. Sloane, Classic Sequences.
EXAMPLE
The fractal sequence f(n) of a dispersion D={d(g,h,)} is defined as follows. For each positive integer n there is a unique (g,h) such that n=d(g,h) and f(n)=g. So f(6)=2 because the row of the Fraenkel array in which 6 occurs is row 2.
MATHEMATICA
num[n_, b_] := Last[NestWhile[{Mod[#[[1]], Last[#[[2]]]], Drop[#[[2]], -1], Append[#[[3]], Quotient[#[[1]], Last[#[[2]]]]]} &, {n, b, {}}, #[[2]] =!= {} &]];
left[n_, b_] := If[Last[num[n, b]] == 0, Dot[num[n, b], Rest[Append[Reverse[b], 0]]], n];
fractal[n_, b_] := # - Count[Last[num[Range[#], b]], 0] &@ FixedPoint[left[#, b] &, n];
Table[fractal[n, Table[Fibonacci[2 i], {i, 12}]], {n, 30}] (* Birkas Gyorgy, Apr 13 2011 *)
Table[Ceiling[NestWhile[Ceiling[#/GoldenRatio^2] - 1 &, n, Ceiling[#/GoldenRatio] == Ceiling[(# - 1)/GoldenRatio]&]/ GoldenRatio], {n, 30}] (* Birkas Gyorgy, Apr 15 2011 *)
CROSSREFS
KEYWORD
nonn
AUTHOR
Clark Kimberling, Jul 10 2006
STATUS
approved