login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A120617
Hankel transform of g.f. 1/sqrt(1+4x^2).
5
1, -2, -4, 8, 16, -32, -64, 128, 256, -512, -1024, 2048, 4096, -8192, -16384, 32768, 65536, -131072, -262144, 524288, 1048576, -2097152, -4194304, 8388608, 16777216, -33554432, -67108864, 134217728, 268435456, -536870912, -1073741824, 2147483648, 4294967296, -8589934592
OFFSET
0,2
COMMENTS
Hankel transform of e.g.f. Bessel_I(0,2*sqrt(-1)*x) or (1,0,-2,0,6,0,-20,...).
Hankel transform of Sum{k=0..n} (-1)^(n-k)*C(n,k)^2.
Hankel transform of A098331.
Hankel transform of A082590. - Paul Barry, Apr 26 2009
FORMULA
G.f.: (1-2*x)/(1+4*x^2); a(n) = 2^n*(cos(Pi*(n+1)/2)+sin(Pi*(n+1)/2)).
a(0)=1, a(1)=-2, a(n)=-4*a(n-2). - Harvey P. Dale, Oct 12 2011
a(n) = ( 2*i^(n+1) )^n, where i=sqrt(-1). - Bruno Berselli, Oct 12 2011
E.g.f.: cos(2*x) - sin(2*x). - Arkadiusz Wesolowski, Aug 31 2012
MATHEMATICA
LinearRecurrence[{0, -4}, {1, -2}, 40] (* or *) CoefficientList[ Series[ (1-2x)/(1+4x^2), {x, 0, 40}], x] (* Harvey P. Dale, Oct 12 2011 *)
CROSSREFS
Sequence in context: A084633 A000079 A011782 * A131577 A155559 A166444
KEYWORD
sign,easy
AUTHOR
Paul Barry, Jun 17 2006
STATUS
approved