login
A number n is included if it satisfies: m divides n for all m's where the m-th prime divides n.
50

%I #27 Mar 25 2019 17:21:04

%S 1,2,4,6,8,12,16,18,24,28,30,32,36,48,54,56,60,64,72,78,84,90,96,108,

%T 112,120,128,144,150,152,156,162,168,180,192,196,216,224,234,240,252,

%U 256,270,288,300,304,312,324,330,336,360,384,390,392,414,420,432,444,448

%N A number n is included if it satisfies: m divides n for all m's where the m-th prime divides n.

%C From _Rémy Sigrist_, Apr 08 2017: (Start)

%C If n is in the sequence, then 2*n is also in the sequence.

%C a(2) = 2 is the only prime number in the sequence.

%C a(1) = 1 is the only odd number in the sequence.

%C (End)

%C Numbers divisible by all of their prime indices. A prime index of n is a number m such that prime(m) divides n. For example, the prime indices of 78 = prime(1) * prime(2) * prime(6) are {1,2,6}, all of which divide 78, so 78 is in the sequence. - _Gus Wiseman_, Mar 23 2019

%H Rémy Sigrist, <a href="/A120383/b120383.txt">Table of n, a(n) for n = 1..10000</a>

%e 28 = 2^2 * 7. 2 is the first prime, 7 is the 4th prime. Since 1 and 4 both divide 28, then 28 is included in the sequence.

%e 78 = 2 * 3 * 13. 2 is the first prime, 3 is the 2nd prime and 13 is the 6th prime. Since 1 and 2 and 6 each divide 78, then 78 is in the sequence. (Note that 1 * 2 * 6 does not divide 78.)

%e From _Gus Wiseman_, Mar 23 2019: (Start)

%e The sequence of terms together with their prime indices begins:

%e 1: {}

%e 2: {1}

%e 4: {1,1}

%e 6: {1,2}

%e 8: {1,1,1}

%e 12: {1,1,2}

%e 16: {1,1,1,1}

%e 18: {1,2,2}

%e 24: {1,1,1,2}

%e 28: {1,1,4}

%e 30: {1,2,3}

%e 32: {1,1,1,1,1}

%e 36: {1,1,2,2}

%e 48: {1,1,1,1,2}

%e 54: {1,2,2,2}

%e 56: {1,1,1,4}

%e 60: {1,1,2,3}

%e 64: {1,1,1,1,1,1}

%e (End)

%p A000040inv := proc(n) local i; i:=1 ; while true do if ithprime(i) = n then RETURN(i) ; fi ; i := i+1 ; end ; end: isA120383 := proc(n) local pl,p,i,j ; pl := ifactors(n) ; pl := pl[2] ; for i from 1 to nops(pl) do p := pl[i] ; j := A000040inv(p[1]) ; if n mod j <> 0 then RETURN(false) ; fi ; od ; RETURN(true) ; end: for n from 2 to 800 do if isA120383(n) then printf("%d,",n); fi ; od ; # _R. J. Mathar_, Sep 02 2006

%t {1}~Join~Select[Range[2, 450], Function[n, AllTrue[PrimePi /@ FactorInteger[n][[All, 1]], Mod[n, #] == 0 &]]] (* _Michael De Vlieger_, Mar 24 2019 *)

%o (PARI) ok(n) = my (f=factor(n)); for (i=1, #f~, if (n % primepi(f[i,1]), return (0))); return (1) \\ _Rémy Sigrist_, Apr 08 2017

%Y Cf. A000720, A003963, A056239, A112798, A323440, A324846, A324847, A324848, A324850, A324852, A324856.

%K nonn

%O 1,2

%A _Leroy Quet_, Jun 29 2006

%E More terms from _R. J. Mathar_, Sep 02 2006

%E Initial 1 prepended by _Rémy Sigrist_, Apr 08 2017