login
A119271
Triangle: number of exactly (m-1)-dimensional partitions of n, for n >= 1, m >= 0.
3
1, 0, 1, 0, 1, 1, 0, 1, 3, 1, 0, 1, 5, 6, 1, 0, 1, 9, 18, 10, 1, 0, 1, 13, 44, 49, 15, 1, 0, 1, 20, 97, 172, 110, 21, 1, 0, 1, 28, 195, 512, 550, 216, 28, 1, 0, 1, 40, 377, 1370, 2195, 1486, 385, 36, 1, 0, 1, 54, 694, 3396, 7603, 7886, 3514, 638, 45, 1, 0, 1, 75, 1251, 7968
OFFSET
1,9
COMMENTS
The partition of 1 is considered to be dimension -1 by convention.
LINKS
Suresh Govindarajan, Rows n = 1..26 of Triangle
Suresh Govindarajan, Partitions Generator (gives partitions of integers <= 25 in any dimension using this triangle).
Suresh Govindarajan, Notes on higher-dimensional partitions, arXiv preprint arXiv:1203.4419, 2012.
FORMULA
a(n,m) = A096806(n,m-1)-a(n,m-1). Binomial transform of n-th row lists the (m-1) dimensional partitions of n.
EXAMPLE
Table starts:
1,
0,1,
0,1,1,
0,1,3,1,
0,1,5,6,1,
CROSSREFS
Cf. A119270, A096806. Column 1 is A007042.
Sequence in context: A081719 A327618 A121314 * A364310 A323222 A125104
KEYWORD
nonn,tabl,hard
AUTHOR
STATUS
approved