This site is supported by donations to The OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A118898 Number of binary sequences of length n containing exactly one subsequence 0000. 2
 0, 0, 0, 0, 1, 2, 5, 12, 28, 62, 136, 294, 628, 1328, 2787, 5810, 12043, 24840, 51016, 104380, 212848, 432732, 877400, 1774672, 3581605, 7213746, 14502449, 29106100, 58323844, 116702074, 233199000, 465405058, 927744428, 1847359520, 3674769991 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,6 COMMENTS Column 1 of A118897. LINKS Index entries for linear recurrences with constant coefficients, signature (2,1,0,-1,-4,-3,-2,-1). FORMULA G.f.=z^4/(1-z-z^2-z^3-z^4)^2. Contribution from Bobby Milazzo, Aug 30 2009: (Start) a(1)=0,a(2)=0,a(3)=0,a(4)=1,a(5)=2,a(6)=5,a(7)=12,a(8)=28 a(n)=2a(n-1)+a(n-2)-a(n-4)-4a(n-5)-3a(n-6)-2a(n-7)-a(n-8) (End) EXAMPLE a(6)=5 because we have 000010,000011,010000,100001 and 110000. G.f. = x^4 + 2*x^5 + 5*x^6 + 12*x^7 + 28*x^8 + 62*x^9 + ... - Zerinvary Lajos, Jun 02 2009 MAPLE g:=z^4/(1-z-z^2-z^3-z^4)^2: gser:=series(g, z=0, 40): seq(coeff(gser, z, n), n=0..37); MATHEMATICA Contribution from Bobby Milazzo, Aug 30 2009: (Start) With Mathematica 7.01 RecurrenceTable[{a[1]==0, a[2]==0, a[3]==0, a[4]==1, a[5]==2, a[6]==5, a[7]==12, a[8]==28, a[n]==2a[n-1]+a[n-2]-a[n-4]-4a[n-5] -3a[n-6]-2a[n-7]-a[n-8]}, a, {n, 9, 50}] (End) LinearRecurrence[{2, 1, 0, -1, -4, -3, -2, -1}, {0, 0, 0, 0, 1, 2, 5, 12}, 50] (* Harvey P. Dale, Aug 01 2012 *) PROG (Sage) taylor( mul(x/(1-x-x^2-x^3-x^4)^2 for i in xrange(1, 2)), x, 0, 31)# Zerinvary Lajos, Jun 02 2009 CROSSREFS Cf. A118897. Sequence in context: A171579 A228638 A202604 * A111586 A192657 A320590 Adjacent sequences:  A118895 A118896 A118897 * A118899 A118900 A118901 KEYWORD nonn,easy AUTHOR Emeric Deutsch, May 04 2006 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified September 16 12:30 EDT 2019. Contains 327098 sequences. (Running on oeis4.)