login
A118682
Triangle where T(n,k) depends on the last digit of prime(n)*prime(k). If this is 1 or 9, T(n,k) = 1; if 3 or 7, T(n,k) = 2; otherwise T(n,k) = 0.
0
0, 0, 1, 0, 0, 0, 0, 1, 0, 1, 0, 2, 0, 2, 1, 0, 1, 0, 1, 2, 1, 0, 1, 0, 1, 2, 1, 1, 0, 2, 0, 2, 1, 2, 2, 1, 0, 1, 0, 1, 2, 1, 1, 2, 1, 0, 2, 0, 2, 1, 2, 2, 1, 2, 1
OFFSET
0,12
COMMENTS
Previous title: A triangular factor function based on the modulo 10 last digit multiplication behavior of the primes (modeled on Jacobi symbols and Legendre symbols).
T(n,k) = 0 exactly when one of the primes is 2 or 5.
FORMULA
T(n,k) = vector(0,1,0,2,0,0,0,2,0,1)[mod(prime(n)*prime(k),10)+1].
EXAMPLE
0
0, 1
0, 0, 0
0, 1, 0, 1
0, 2, 0, 2, 1
0, 1, 0, 1, 2, 1
0, 1, 0, 1, 2, 1, 1
0, 2, 0, 2, 1, 2, 2, 1
0, 1, 0, 1, 2, 1, 1, 2, 1
0, 2, 0, 2, 1, 2, 2, 1, 2, 1
MATHEMATICA
f[n_, m_] = If[(Mod[Prime[n]*Prime[m], 10] - 1 == 0) || (Mod[Prime[n]*Prime[m], 10] - 9 == 0), 1, If[(Mod[Prime[n]*Prime[m], 10] - 3 == 0) || (Mod[Prime[n]*Prime[m], 10] - 7 == 0), 2, 0]] a = Table[Table[f[n, m], {n, 1, m}], {m, 1, 10}] aout = Flatten[a]
This function gives an op-art pattern from the primes as: bout = Table[f[n, m], {n, 1, 60}, {m, 1, 60}]; ListDensityPlot[bout, Mesh -> False]
CROSSREFS
Sequence in context: A277144 A069848 A194702 * A198393 A083054 A336921
KEYWORD
nonn,tabl,base
AUTHOR
Roger L. Bagula, May 19 2006
EXTENSIONS
Edited by Franklin T. Adams-Watters, Sep 30 2011
STATUS
approved