login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A118682 Triangle where T(n,k) depends on the last digit of prime(n)*prime(k). If this is 1 or 9, T(n,k) = 1; if 3 or 7, T(n,k) = 2; otherwise T(n,k) = 0. 0
0, 0, 1, 0, 0, 0, 0, 1, 0, 1, 0, 2, 0, 2, 1, 0, 1, 0, 1, 2, 1, 0, 1, 0, 1, 2, 1, 1, 0, 2, 0, 2, 1, 2, 2, 1, 0, 1, 0, 1, 2, 1, 1, 2, 1, 0, 2, 0, 2, 1, 2, 2, 1, 2, 1 (list; table; graph; refs; listen; history; text; internal format)
OFFSET

0,12

COMMENTS

Previous title: A triangular factor function based on the modulo 10 last digit multiplication behavior of the primes (modeled on Jacobi symbols and Legendre symbols).

T(n,k) = 0 exactly when one of the primes is 2 or 5.

LINKS

Table of n, a(n) for n=0..54.

FORMULA

T(n,k) = vector(0,1,0,2,0,0,0,2,0,1)[mod(prime(n)*prime(k),10)+1].

EXAMPLE

0

0, 1

0, 0, 0

0, 1, 0, 1

0, 2, 0, 2, 1

0, 1, 0, 1, 2, 1

0, 1, 0, 1, 2, 1, 1

0, 2, 0, 2, 1, 2, 2, 1

0, 1, 0, 1, 2, 1, 1, 2, 1

0, 2, 0, 2, 1, 2, 2, 1, 2, 1

MATHEMATICA

f[n_, m_] = If[(Mod[Prime[n]*Prime[m], 10] - 1 == 0) || (Mod[Prime[n]*Prime[m], 10] - 9 == 0), 1, If[(Mod[Prime[n]*Prime[m], 10] - 3 == 0) || (Mod[Prime[n]*Prime[m], 10] - 7 == 0), 2, 0]] a = Table[Table[f[n, m], {n, 1, m}], {m, 1, 10}] aout = Flatten[a]

This function gives an op-art pattern from the primes as: bout = Table[f[n, m], {n, 1, 60}, {m, 1, 60}]; ListDensityPlot[bout, Mesh -> False]

CROSSREFS

Sequence in context: A277144 A069848 A194702 * A198393 A083054 A336921

Adjacent sequences:  A118679 A118680 A118681 * A118683 A118684 A118685

KEYWORD

nonn,tabl,base

AUTHOR

Roger L. Bagula, May 19 2006

EXTENSIONS

Edited by Franklin T. Adams-Watters, Sep 30 2011

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified April 21 02:10 EDT 2021. Contains 343143 sequences. (Running on oeis4.)