login
A118587
Expansion of (17-25*x-23*x^2+133*x^3)/(1-x)^4.
0
17, 43, 47, 131, 397, 947, 1883, 3307, 5321, 8027, 11527, 15923, 21317, 27811, 35507, 44507, 54913, 66827, 80351, 95587, 112637, 131603, 152587, 175691, 201017, 228667, 258743, 291347, 326581, 364547, 405347, 449083, 495857, 545771, 598927
OFFSET
0,1
COMMENTS
The old name was "A nested recursion from a cubic prime generating polynomial so that only the ending coefficients are necessary to determine the recursion: f[x_] = 17*x^3 - 62*x^2 + 71*x + 17."
FORMULA
a(n) = 17*n^3 - 62*n^2 + 71*n + 17.
G.f.: (17 - 25*x - 23*x^2 + 133*x^3)/(1-x)^4. - Colin Barker, Mar 11 2013
MATHEMATICA
LinearRecurrence[{4, -6, 4, -1}, {17, 43, 47, 131}, 40] (* Harvey P. Dale, Mar 24 2016 *)
CROSSREFS
Sequence in context: A196476 A086006 A195685 * A215164 A123592 A260553
KEYWORD
nonn,less,easy
AUTHOR
Roger L. Bagula, May 06 2006
EXTENSIONS
New name from Colin Barker, Mar 11 2013
Overall editing by Joerg Arndt, Mar 12 2013
STATUS
approved