This site is supported by donations to The OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A118322 Decimal expansion of perimeter of the closed portion of the bow curve. 0
 1, 9, 2, 1, 5, 1, 1, 3, 6, 5, 1, 7, 2, 5, 1, 2, 5, 7, 0, 1, 5, 6, 2, 9, 9, 8, 2, 6, 0, 5, 9, 7, 4, 0, 8, 3, 6, 5, 7, 6, 1, 3, 0, 4, 9, 0, 5, 2, 7, 6, 2, 4, 2, 5, 5, 4, 5, 4, 4, 1, 5, 7, 6, 4, 8, 3, 1, 8, 9, 3, 1, 0, 5, 4, 6, 3, 2, 7, 7, 9, 6, 1, 4, 7, 0, 5, 8, 3, 9, 5, 1, 8, 6, 4, 2, 9, 0, 2, 0, 5, 5, 2, 6, 0, 4 (list; constant; graph; refs; listen; history; text; internal format)
 OFFSET 1,2 COMMENTS Writing x=r*cos(phi), y=r*sin(phi), r=sin(phi)*(1-2*sin^2(phi))/cos^4(phi) in circular coordinates gives the arc length of one wing of int_{phi = 0 .. Pi/4} sqrt( (dx/dphi)^2 + (dy/dphi)^2)) dphi = int_{s=0..1/sqrt(2)} sqrt(1-5*s^2+20*s^6) / (1-s^2)^3 ds . [From R. J. Mathar, Mar 23 2010] LINKS Eric Weisstein's World of Mathematics, Bow EXAMPLE 1.9215113651725125701... MAPLE Digits := 120 : f := 2*sqrt(1-5*x^2+20*x^6)/(1-x^2)^3 ; Int(f, x=0..1/sqrt(2.0)) ; x := evalf(%) ; [From R. J. Mathar, Mar 23 2010] MATHEMATICA f[x_] := 2*Sqrt[1-5*x^2+20*x^6]/(1-x^2)^3; First[ RealDigits[ NIntegrate[f[x], {x, 0, 1/Sqrt[2]}, WorkingPrecision -> 120], 10, 105]](* Jean-François Alcover, Jun 08 2012, after R. J. Mathar *) CROSSREFS Sequence in context: A010160 A093962 A198984 * A199507 A225446 A154993 Adjacent sequences:  A118319 A118320 A118321 * A118323 A118324 A118325 KEYWORD nonn,cons AUTHOR Eric W. Weisstein, Apr 23, 2006 EXTENSIONS More digits from R. J. Mathar, Mar 23 2010 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Transforms | Puzzles | Hot | Classics
Recent Additions | More pages | Superseeker | Maintained by The OEIS Foundation Inc.

Content is available under The OEIS End-User License Agreement .