login
Mirror image of A098473 formatted as a triangular array.
2

%I #22 Sep 24 2018 16:53:14

%S 1,2,1,6,4,1,20,18,6,1,70,80,36,8,1,252,350,200,60,10,1,924,1512,1050,

%T 400,90,12,1,3432,6468,5292,2450,700,126,14,1,12870,27456,25872,14112,

%U 4900,1120,168,16,1,48620,115830,123552,77616,31752,8820,1680,216,18,1

%N Mirror image of A098473 formatted as a triangular array.

%H G. C. Greubel, <a href="/A117852/b117852.txt">Table of n, a(n) for the first 100 rows, flattened</a>

%F Sum_{k=0..n} T(n,k)*x^k = A126869(n), A002426(n), A000984(n), A026375(n), A081671(n), A098409(n), A098410(n) for x = -2, -1, 0, 1, 2, 3, 4 respectively. - _Philippe Deléham_, Sep 28 2007

%F T(n,k) = binomial(n,k)*A000984(n-k). - _Philippe Deléham_, Dec 12 2009

%F O.g.f.: 1/sqrt( (1 - x*t)*(1 - (x + 4)*t) ) = 1 + (2 + x)*t + (6 + 4*x + x^2)*t^2 + .... - _Peter Bala_, Nov 10 2013

%e Triangle begins:

%e 1;

%e 2, 1;

%e 6, 4, 1;

%e 20, 18, 6, 1;

%e 70, 80, 36, 8, 1;

%e 252, 350, 200, 60, 10, 1;

%e ...

%p c:=n->binomial(2*n, n): T:=proc(n, k) if k<=n then binomial(n, k)*c(n-k) else 0 fi end: for n from 0 to 10 do seq(T(n, k), k=0..n) od; #

%t Table[ Binomial[n, k]*Binomial[2*n - 2*k, n - k], {n,0,10}, {k,0,n} ] // Flatten (* _G. C. Greubel_, Mar 07 2017 *)

%Y Cf. A098473.

%K nonn,tabl

%O 0,2

%A Farkas Janos Smile (smile_farkasjanos(AT)yahoo.com.au), Dec 21 2006

%E Edited by _N. J. A. Sloane_ at the suggestion of _Andrew S. Plewe_, Jun 12 2007