This site is supported by donations to The OEIS Foundation.

 Annual appeal: Please make a donation to keep the OEIS running! Over 6000 articles have referenced us, often saying "we discovered this result with the help of the OEIS". Other ways to donate

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A117792 First entry of the vector (M^n)w, where M is the 6x6 matrix [[0, 1, 0, 0, 0, 0, ], [0, 0, 1, 0, 0, 0], [0, 0, 0, 1, 0, 0], [0, 0, 0, 0, 1, 0], [0, 0, 0, 0, 0, 1], [1, 0, -1, 0, 1, 1]] and w is the column vector [0, 1, 1, 2, 3, 5]. 0
 0, 1, 1, 2, 3, 5, 7, 11, 16, 24, 36, 54, 81, 122, 183, 275, 413, 620, 931, 1398, 2099, 3152, 4733, 7107, 10672, 16025, 24063, 36133, 54257, 81472, 122338, 183702, 275846, 414209, 621974, 933953, 1402419, 2105865, 3162156, 4748277, 7129988, 10706353 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,4 LINKS Index entries for linear recurrences with constant coefficients, signature (1,1,0,-1,0,1). FORMULA G.f.: -x*(1+x^4) / ( -1+x+x^2-x^4+x^6 ). - R. J. Mathar, Jul 14 2014 MAPLE with(linalg): M:=matrix(6, 6, [0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 1, 0, -1, 0, 1, 1]): w[0]:=matrix(6, 1, [0, 1, 1, 2, 3, 5]): for n from 1 to 45 do w[n]:=multiply(M, w[n-1]) od: seq(w[n][1, 1], n=0..45); MATHEMATICA M = {{0, 1, 0, 0, 0, 0 }, {0, 0, 1, 0, 0, 0}, {0, 0, 0, 1, 0, 0}, {0, 0, 0, 0, 1, 0}, {0, 0, 0, 0, 0, 1}, {1, 0, -1, 0, 1, 1}}; w[1] = {0, 1, 1, 2, 3, 5}; w[n_] := w[n] = M.w[n - 1] Table[w[n][[1]], {n, 1, 25}] CROSSREFS Sequence in context: A286271 A083198 A112088 * A154888 A271485 A018057 Adjacent sequences:  A117789 A117790 A117791 * A117793 A117794 A117795 KEYWORD nonn,easy AUTHOR Roger L. Bagula, Apr 15 2006 EXTENSIONS Edited by N. J. A. Sloane, Apr 30 2006 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.