OFFSET
0,46
COMMENTS
FORMULA
G.f.=1/[(1-tx)*Product(1-x^(2j-1), j=2..infinity)].
EXAMPLE
T(10,1)=2 because the only partitions of 10 into odd parts and having exactly 1 part equal to 1 are [9,1] and [3,3,3,1].
Triangle starts:
1;
0,1;
0,0,1;
1,0,0,1;
0,1,0,0,1;
MAPLE
g:=1/(1-t*x)/product(1-x^(2*j-1), j=2..30): gser:=simplify(series(g, x=0, 18)): P[0]:=1: for n from 1 to 14 do P[n]:=sort(coeff(gser, x^n)) od: for n from 0 to 14 do seq(coeff(P[n], t, j), j=0..n) od; # yields sequence in triangular form
CROSSREFS
KEYWORD
nonn,tabl
AUTHOR
Emeric Deutsch, Feb 22 2006
STATUS
approved